Remkomplekty.ru

IT Новости из мира ПК
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Метод трапеции паскаль

Метод трапеций

Сегодня мы познакомимся с еще одним методом численного интегрирования, методом трапеций. С его помощью мы будем вычислять определенные интегралы с заданной степенью точности. В статье мы опишем суть метода трапеций, разберем, как выводится формула, сравним метод трапеции с методом прямоугольника, запишем оценку абсолютной погрешности метода. Каждый из разделов мы проиллюстрируем примерами для более глубокого понимания материала.

Метод трапеций

Предположим, что нам нужно приближенно вычислить определенный интеграл ∫ a b f ( x ) d x , подынтегральная функция которого y = f ( x ) непрерывна на отрезке [ a ; b ] . Для этого разделим отрезок [ a ; b ] на несколько равных интервалов длины h точками a = x 0 x 1 x 2 . . . x n — 1 x n = b . Обозначим количество полученных интервалов как n .

Найдем шаг разбиения: h = b — a n . Определим узлы из равенства x i = a + i · h , i = 0 , 1 , . . . , n .

На элементарных отрезках рассмотрим подынтегральную функцию x i — 1 ; x i , i = 1 , 2 , . . , n .

При бесконечном увеличении n сведем все случаи к четырем простейшим вариантам:

Выделим отрезки x i — 1 ; x i , i = 1 , 2 , . . . , n . Заменим на каждом из графиков функцию y = f ( x ) отрезком прямой, который проходит через точки с координатами x i — 1 ; f x i — 1 и x i ; f x i . Отметим их на рисунках синим цветом.

Возьмем выражение f ( x i — 1 ) + f ( x i ) 2 · h в качестве приближенного значения интеграла ∫ x i — 1 x i f ( x ) d x . Т.е. примем ∫ x i — 1 x i f ( x ) d x ≈ f ( x i — 1 ) + f ( x i ) 2 · h .

Давайте посмотрим, почему метод численного интегрирования, который мы изучаем, носит название метода трапеций. Для этого нам нужно выяснить, что с точки зрения геометрии означает записанное приближенное равенство.

Для того, чтобы вычислить площадь трапеции, необходимо умножить полусуммы ее оснований на высоту. В первом случае площадь криволинейной трапеции примерно равна трапеции с основаниями f ( x i — 1 ) , f ( x i ) высотой h . В четвертом из рассматриваемых нами случаев заданный интеграл ∫ x i — 1 x f ( x ) d x приближенно равен площади трапеции с основаниями — f ( x i — 1 ) , — f ( x i ) и высотой h , которую необходимо взять со знаком « — ». Для того, чтобы вычислить приближенное значение определенного интеграла ∫ x i — 1 x i f ( x ) d x во втором и третьем из рассмотренных случаев, нам необходимо найти разность площадей красной и синей областей, которые мы отметили штриховкой на расположенном ниже рисунке.

Подведем итоги. Суть метода трапеций заключается в следующем: мы можем представить определенный интеграл ∫ a b f ( x ) d x в виде суммы интегралов вида ∫ x i — 1 x i f ( x ) d x на каждом элементарном отрезке и в последующей приближенной замене ∫ x i — 1 x i f ( x ) d x ≈ f ( x i — 1 ) + f ( x i ) 2 · h .

Формула метода трапеций

Вспомним пятое свойство определенного интеграла: ∫ a b f ( x ) d x = ∑ i = 1 n ∫ x i — 1 x i f ( x ) d x . Для того, чтобы получить формулу метода трапеций, необходимо вместо интегралов ∫ x i — 1 x i f ( x ) d x подставить их приближенные значения: ∫ x i — 1 x i f ( x ) d x = ∑ i = 1 n ∫ x i — 1 x i f ( x ) d x ≈ ∑ i = 1 n f ( x i — 1 ) + f ( x i ) 2 · h = = h 2 · ( f ( x 0 ) + f ( x 1 ) + f ( x 1 ) + f ( x 2 ) + f ( x 2 ) + f ( x 3 ) + . . . + f ( x n ) ) = = h 2 · f ( x 0 ) + 2 ∑ i = 1 n — 1 f ( x i ) + f ( x n ) ⇒ ∫ x i — 1 x i f ( x ) d x ≈ h 2 · f ( x 0 ) + 2 ∑ i = 1 n — 1 f ( x i ) + f ( x n )

Формула метода трапеций: ∫ x i — 1 x i f ( x ) d x ≈ h 2 · f ( x 0 ) + 2 ∑ i = 1 n — 1 f ( x i ) + f ( x n )

Оценка абсолютной погрешности метода трапеций

Оценим абсолютную погрешность метода трапеций следующим образом:

δ n ≤ m a x x ∈ [ a ; b ] f » ( x ) · n · h 3 12 = m a x x ∈ [ a ; b ] f » ( x ) · b — a 3 12 n 2

Графическая иллюстрация метода трапеций

Графическая иллюстрация метода трапеций приведена на рисунке:

Примеры вычислений

Разберем примеры использования метода трапеций для приближенного вычисления определенных интегралов. Особое внимание уделим двум разновидностям заданий:

  • вычисление определенного интеграла методом трапеций для данного числа разбиения отрезка n;
  • нахождение приближенного значения определенного интеграла с оговоренной точностью.

При заданном n все промежуточные вычисления необходимо проводить с достаточно высокой степенью точности. Точность вычислений должна быть те выше, чем больше n .

Если мы имеем заданную точность вычисления определенного интеграла, то все промежуточные вычисления необходимо проводить на два и более порядков точнее. Например, если задана точность до 0 , 01 , то промежуточные вычисления мы проводим с точностью до 0 , 0001 или 0 , 00001 . При больших n промежуточные вычисления необходимо проводить с еще более высокой точностью.

Рассмотрим приведенное выше правило на примере. Для этого сравним значения определенного интеграла, вычисленного по формуле Ньютона-Лейбница и полученного по методу трапеций.

Итак, ∫ 0 5 7 d x x 2 + 1 = 7 a r c t g ( x ) 0 5 = 7 a r c t g 5 ≈ 9 , 613805 .

Вычислим по методу трапеций определенный интеграл ∫ 0 5 7 x 2 + 1 d x для n равным 10 .

Решение

Формула метода трапеций имеет вид ∫ x i — 1 x i f ( x ) d x ≈ h 2 · f ( x 0 ) + 2 ∑ i = 1 n — 1 f ( x i ) + f ( x n )

Для того, чтобы применить формулу, нам необходимо вычислить шаг h по формуле h = b — a n , определить узлы x i = a + i · h , i = 0 , 1 , . . . , n , вычислить значения подынтегральной функции f ( x ) = 7 x 2 + 1 .

Шаг разбиения вычисляется следующим образом: h = b — a n = 5 — 0 10 = 0 . 5 . Для вычисления подынтегральной функции в узлах x i = a + i · h , i = 0 , 1 , . . . , n будем брать четыре знака после запятой:

i = 0 : x 0 = 0 + 0 · 0 . 5 = 0 ⇒ f ( x 0 ) = f ( 0 ) = 7 0 2 + 1 = 7 i = 1 : x 1 = 0 + 1 · 0 . 5 = 0 . 5 ⇒ f ( x 1 ) = f ( 0 . 5 ) = 7 0 , 5 2 + 1 = 5 , 6 . . . i = 10 : x 10 = 0 + 10 · 0 . 5 = 5 ⇒ f ( x 10 ) = f ( 5 ) = 7 5 2 + 1 ≈ 0 , 2692

Приближенные вычислительные методы. Метод центральных трапеций

Обучение программированию я систематизирую по виду занятий:

  • лекции,
  • практические занятия,
  • абораторные работы,
  • творческие работы.

Практические занятия вырабатывают навыки реализации теоретических положений, полученных на лекциях, при решении индивидуальных пользовательских задач. Я способствую развитию творческого мышления, моделируя проблемно-творческую ситуацию.

Читать еще:  Паскаль с нуля

Фрагмент урока по теме “Приближенные вычислительные методы. Метод центральных трапеций”

Урок я начинаю с проблемного вопроса: “Как при помощи персонального компьютера вычислить определенный интеграл?” Лица учеников в начале выражают удивление, а потом появляется интерес, я четко вижу, как “загораются” глаза у ребят. А действительно, как? Они вспоминают, что на уроках математики определенный интеграл вычисляется по формуле Ньютона-Лейбница. На клавиатуре компьютера нет клавиши со знаком интеграла, среди стандартных функций языка Паскаль тоже нет функции, которая бы вычисляла определенный интеграл. Как же быть? Тогда я задаю наводящий вопрос: “К чему сводится вычисление определенного интеграла с геометрической точки зрения?” Большинство учеников сразу вспоминают, что вычисление определенного интеграла сводится к нахождению площади криволинейной трапеции. Мы вспоминаем определение криволинейной трапеции. Затем я начинаю объяснение нового материала.

Раздел. Приближенные вычислительные методы.

Тема. Метод центральных трапеций. (2 час.)

Цели.

Образовательная:

  • дать представление о приближенных методах вычисления с помощью компьютера,
  • закрепить умения и навыки по работе с операторами цикла с параметром.

Развивающая:

  • развитие абстрактного и логического мышления.

Воспитательная:

  • формирование нравственного отношения учащихся к программным средствам вычислительной техники,
  • ответственное отношение к труду, аккуратность.

Тип урока. Интегрированный урок.

Метод. Объяснительно-иллюстративный, частично-поисковый.

Межпредметная связь. Математика. Вычисление площади криволинейной трапеции.

Дифференциация. По уровню сложности примеров.

Логическая схема урока

Актуализация деятельности
|
Объяснение нового материала
|
Знаковая фиксация понятия
|
Разработка алгоритма решения задач
|
Программирование
|
Проверка результатов
|
Самостоятельная работа
|
Подведение итогов

Ход урока

1. Оргмомент. 2 мин.

Цель. Подготовка учащихся к восприятию нового материала.

2. Актуализация опорных знаний. 5 мин.

Цель. Актуализировать знания учащихся по теме “Вычисление определенного интеграла”.

Вопросы для фронтального опроса.

  • По какой формуле вычисляется определенный интеграл?

Ответ: По формуле Ньютона-Лейбница.

  • В чем геометрический смысл вычисления определенного интеграла?

Ответ: Вычисление определенного интеграла сводится к нахождению площади криволинейной трапеции.

  • Какая геометрическая фигура называется криволинейной трапецией?

Ответ. Фигура, ограниченная графиком функции и двумя параллельными прямыми х = а и у = b называется криволинейной трапецией.

3. Объяснение нового материала. 15 мин.

4. Запись в тетради. 5 мин.

Математическая формализация метода.

  • Количество полученных интервалов N = (b – a) / h;
  • Формула для вычисления центральных точек Xi = a + h * (i –0.5);
  • Вычисление значения функций в центральных точках f(xi); g(xi);
  • Формула для вычисления площади криволинейной трапеции S=h*S (f(xi)-g(xi))

5. Блок-схема метода. 5 мин.

6. Задача. Вычислить площадь круга единичного радиуса. 8 мин.

Вопросы на повторение.

  • По какой формуле вычисляется площадь круга?

Ответ. S = R 2 .

  • Напишите аналитическое уравнение окружности.

Ответ. X 2 + Y 2 = R 2 .

f =; g = –f

h = 0.1; 0.01; 0.001 (шаг вычислений).

7. Программа на языке Паскаль. 15 мин.

Метод трапеций

Сегодня мы познакомимся с еще одним методом численного интегрирования, методом трапеций. С его помощью мы будем вычислять определенные интегралы с заданной степенью точности. В статье мы опишем суть метода трапеций, разберем, как выводится формула, сравним метод трапеции с методом прямоугольника, запишем оценку абсолютной погрешности метода. Каждый из разделов мы проиллюстрируем примерами для более глубокого понимания материала.

Метод трапеций

Предположим, что нам нужно приближенно вычислить определенный интеграл ∫ a b f ( x ) d x , подынтегральная функция которого y = f ( x ) непрерывна на отрезке [ a ; b ] . Для этого разделим отрезок [ a ; b ] на несколько равных интервалов длины h точками a = x 0 x 1 x 2 . . . x n — 1 x n = b . Обозначим количество полученных интервалов как n .

Найдем шаг разбиения: h = b — a n . Определим узлы из равенства x i = a + i · h , i = 0 , 1 , . . . , n .

На элементарных отрезках рассмотрим подынтегральную функцию x i — 1 ; x i , i = 1 , 2 , . . , n .

При бесконечном увеличении n сведем все случаи к четырем простейшим вариантам:

Выделим отрезки x i — 1 ; x i , i = 1 , 2 , . . . , n . Заменим на каждом из графиков функцию y = f ( x ) отрезком прямой, который проходит через точки с координатами x i — 1 ; f x i — 1 и x i ; f x i . Отметим их на рисунках синим цветом.

Возьмем выражение f ( x i — 1 ) + f ( x i ) 2 · h в качестве приближенного значения интеграла ∫ x i — 1 x i f ( x ) d x . Т.е. примем ∫ x i — 1 x i f ( x ) d x ≈ f ( x i — 1 ) + f ( x i ) 2 · h .

Давайте посмотрим, почему метод численного интегрирования, который мы изучаем, носит название метода трапеций. Для этого нам нужно выяснить, что с точки зрения геометрии означает записанное приближенное равенство.

Для того, чтобы вычислить площадь трапеции, необходимо умножить полусуммы ее оснований на высоту. В первом случае площадь криволинейной трапеции примерно равна трапеции с основаниями f ( x i — 1 ) , f ( x i ) высотой h . В четвертом из рассматриваемых нами случаев заданный интеграл ∫ x i — 1 x f ( x ) d x приближенно равен площади трапеции с основаниями — f ( x i — 1 ) , — f ( x i ) и высотой h , которую необходимо взять со знаком « — ». Для того, чтобы вычислить приближенное значение определенного интеграла ∫ x i — 1 x i f ( x ) d x во втором и третьем из рассмотренных случаев, нам необходимо найти разность площадей красной и синей областей, которые мы отметили штриховкой на расположенном ниже рисунке.

Читать еще:  Сортировка чисел в массиве паскаль

Подведем итоги. Суть метода трапеций заключается в следующем: мы можем представить определенный интеграл ∫ a b f ( x ) d x в виде суммы интегралов вида ∫ x i — 1 x i f ( x ) d x на каждом элементарном отрезке и в последующей приближенной замене ∫ x i — 1 x i f ( x ) d x ≈ f ( x i — 1 ) + f ( x i ) 2 · h .

Формула метода трапеций

Вспомним пятое свойство определенного интеграла: ∫ a b f ( x ) d x = ∑ i = 1 n ∫ x i — 1 x i f ( x ) d x . Для того, чтобы получить формулу метода трапеций, необходимо вместо интегралов ∫ x i — 1 x i f ( x ) d x подставить их приближенные значения: ∫ x i — 1 x i f ( x ) d x = ∑ i = 1 n ∫ x i — 1 x i f ( x ) d x ≈ ∑ i = 1 n f ( x i — 1 ) + f ( x i ) 2 · h = = h 2 · ( f ( x 0 ) + f ( x 1 ) + f ( x 1 ) + f ( x 2 ) + f ( x 2 ) + f ( x 3 ) + . . . + f ( x n ) ) = = h 2 · f ( x 0 ) + 2 ∑ i = 1 n — 1 f ( x i ) + f ( x n ) ⇒ ∫ x i — 1 x i f ( x ) d x ≈ h 2 · f ( x 0 ) + 2 ∑ i = 1 n — 1 f ( x i ) + f ( x n )

Формула метода трапеций: ∫ x i — 1 x i f ( x ) d x ≈ h 2 · f ( x 0 ) + 2 ∑ i = 1 n — 1 f ( x i ) + f ( x n )

Оценка абсолютной погрешности метода трапеций

Оценим абсолютную погрешность метода трапеций следующим образом:

δ n ≤ m a x x ∈ [ a ; b ] f » ( x ) · n · h 3 12 = m a x x ∈ [ a ; b ] f » ( x ) · b — a 3 12 n 2

Графическая иллюстрация метода трапеций

Графическая иллюстрация метода трапеций приведена на рисунке:

Примеры вычислений

Разберем примеры использования метода трапеций для приближенного вычисления определенных интегралов. Особое внимание уделим двум разновидностям заданий:

  • вычисление определенного интеграла методом трапеций для данного числа разбиения отрезка n;
  • нахождение приближенного значения определенного интеграла с оговоренной точностью.

При заданном n все промежуточные вычисления необходимо проводить с достаточно высокой степенью точности. Точность вычислений должна быть те выше, чем больше n .

Если мы имеем заданную точность вычисления определенного интеграла, то все промежуточные вычисления необходимо проводить на два и более порядков точнее. Например, если задана точность до 0 , 01 , то промежуточные вычисления мы проводим с точностью до 0 , 0001 или 0 , 00001 . При больших n промежуточные вычисления необходимо проводить с еще более высокой точностью.

Рассмотрим приведенное выше правило на примере. Для этого сравним значения определенного интеграла, вычисленного по формуле Ньютона-Лейбница и полученного по методу трапеций.

Итак, ∫ 0 5 7 d x x 2 + 1 = 7 a r c t g ( x ) 0 5 = 7 a r c t g 5 ≈ 9 , 613805 .

Вычислим по методу трапеций определенный интеграл ∫ 0 5 7 x 2 + 1 d x для n равным 10 .

Решение

Формула метода трапеций имеет вид ∫ x i — 1 x i f ( x ) d x ≈ h 2 · f ( x 0 ) + 2 ∑ i = 1 n — 1 f ( x i ) + f ( x n )

Для того, чтобы применить формулу, нам необходимо вычислить шаг h по формуле h = b — a n , определить узлы x i = a + i · h , i = 0 , 1 , . . . , n , вычислить значения подынтегральной функции f ( x ) = 7 x 2 + 1 .

Шаг разбиения вычисляется следующим образом: h = b — a n = 5 — 0 10 = 0 . 5 . Для вычисления подынтегральной функции в узлах x i = a + i · h , i = 0 , 1 , . . . , n будем брать четыре знака после запятой:

i = 0 : x 0 = 0 + 0 · 0 . 5 = 0 ⇒ f ( x 0 ) = f ( 0 ) = 7 0 2 + 1 = 7 i = 1 : x 1 = 0 + 1 · 0 . 5 = 0 . 5 ⇒ f ( x 1 ) = f ( 0 . 5 ) = 7 0 , 5 2 + 1 = 5 , 6 . . . i = 10 : x 10 = 0 + 10 · 0 . 5 = 5 ⇒ f ( x 10 ) = f ( 5 ) = 7 5 2 + 1 ≈ 0 , 2692

«Численное интегрирование в Pascal»

Как организовать дистанционное обучение во время карантина?

Помогает проект «Инфоурок»

Государственное профессиональное образовательное учреждение

«Усинский политехнический техникум»

Научная конференция студентов

Направление: Информационные технологии

Название исследования: «Численное интегрирование в Pascal »

Хворост Мария Григорьевна

ГПОУ «УПТ», преподаватель

Появление и непрерывное совершенствование быстродействующих электронных вычислительных машин (ЭВМ) привело к подлинно революционному преобразованию науки. Изменилась технология научных исследований, колоссально увеличились возможности теоретического изучения, прогноза сложных процессов, проектирования инженерных конструкций. Решение крупных научно-технических проблем, примерами которых могут служить проблемы овладения ядерной энергией и освоения космоса, стало возможным лишь благодаря применению математического моделирования и новых численных методов, предназначенных для ЭВМ.

В настоящее время можно говорить, что появился новый способ теоретического исследования сложных процессов, допускающих математическое описание, — вычислительный эксперимент, т.е. исследование естественнонаучных проблем средствами вычислительной математики. Разработка и исследование вычислительных алгоритмов и их применение к решению конкретных задач составляет содержание огромного раздела современной математики –«Численные методы».

Многие задачи для нахождения площадей поверхностей, объемов тел и длин приводят к вычислению определенных интегралов, которые могут быть образованы очень сложной функцией или вовсе первообразная функции отсутствует. Следовательно, невозможно аналитически вычислить значение определённого интеграла по формуле Ньютона-Лейбница.

Можем ли мы найти решение данной задачи? Обратимся к численным методам.

Предмет моего исследования – решение интегралов с помощью ЭВМ.

Объект исследования — численные методы решения интегралов.

Цель моей работы – изучить методы численного интегрирования, составить алгоритм программы для вычисления поставленной задачи методами параллелограммов и трапеций на языке Pascal .

Из цели вытекают следующие задачи:

Изучить методы численного интегрирования.

Составить алгоритм программы для вычисления поставленной задачи методом прямоугольников и трапеций.

Описание методов вычислительной математики, которые будут использованы при решении поставленной задачи.

Численные методы дают приближенное решение задачи. Это значит, что вместо точного решения и некоторой задачи мы находим решение у другой задачи, близкое в некотором смысле к искомому. Основная идея всех методов — дискретизация или аппроксимация (замена, приближение) исходной задачи другой задачей, более удобной для решения на ЭВМ, причем решение аппроксимирующей задачи зависит от некоторых параметров, управляя которыми, можно определить решение с требуемой точностью

Читать еще:  Графические примитивы паскаль

Численное интегрирование — вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади криволинейной трапеции, ограниченной осью абсцисс, графиком интегрируемой функции и отрезками прямых, которые являются пределами интегрирования.

Методы численного интегрирования, основаны на замене подынтегральной функции интерполяционным многочленом. Это позволяет приближенно заменить определенный интеграл интерполяционной суммой. В зависимости от способа ее вычисления получаются разные методы численного интегрирования:

• метод трапеций и т.д.;

На практике используют следующие методы прямоугольников:

При вычислении интеграла используют формулу трапеций

Разработка алгоритма решения задачи и написание программы

Рассмотрим задачу нахождения интеграла функции и найдем ее решение методами численного интегрирования.

В основной программе необходимо предусмотреть ввод необходимых данных и реализацию контрольно примера, а также удобное управление элементами программы и команду выхода.

Подпрограммы реализованы в виде функций. Существует главная функция, которая вызывается из основной программы и которая выполняет основные действия (подсчет значения интеграла и вывод на экран результата, вывод графика на экран), вызывая другие подпрограммы.

Главная функция вызывает функцию подсчета интеграла с заданной точностью вычислений, которая в свою очередь на каждом шаге вызывает функцию подсчета значения функции.

Вычислите по формуле прямоугольников интеграл от функции в границах от a=1 до b=1.5, при заданном n=10.

Программа вычисления интеграла по методу левых прямоугольников на языке

Вычисление определенного интеграла методами трапеций и средних прямоугольников

Введение, математическое обоснование и анализ задачи.

Алгоритм и его описание.

Исходные данные. Результаты расчетов и анализ.

Заключение и выводы.

Известно, что определенный интеграл функции типа <2203_1>численно представляет собой площадь криволинейной трапеции ограниченной кривыми x=0, y=a, y=b и y= (Рис. 1). Есть два метода вычисления этой площади или определенного интеграла — метод трапеций (Рис. 2) и метод средних прямоугольников (Рис. 3).

Рис. 1 . Криволинейная трапеция.

Рис. 2 . Метод трапеций.

Рис. 3<2203_4>. Метод средних прямоугольников.

По методам трапеций и средних прямоугольников соответственно интеграл равен сумме площадей прямоугольных трапеций, где основание трапеции какая-либо малая величина (точность), и сумма площадей прямоугольников, где основание прямоугольника какая-либо малая величина (точность), а высота определяется по точке пересечения верхнего основания прямоугольника, которое график функции должен пересекать в середине. Соответственно получаем формулы площадей —

для метода трапеций:

,

для метода средних прямоугольников:

.

Соответственно этим формулам и составим алгоритм.

Рис. 4. Алгоритм работы программы integral.pas.

Программа написана на Tubro Pascla 6.0 для MS-DOS. Ниже приведен ее листинг:

writeln(«—>Метод средних прямоугольников.»);

for c:=1 to round(abs(x2-x1)/e) do begin

for c:=1 to round(abs(x2-x1)/e) do begin

if xx2>xx1 then xx3:=xx1 else xx3:=xx2;

writeln(«-=Программа вычисления определенного интеграла=-«);

writeln(«Введите исходные значения:»);

write(«Начальное значение x (x1)=»);Readln(x1);

write(«Конечное значение x (x2)=»);Readln(x2);

write(«Точность вычисления (e)=»);Readln(e);

writeln(«Спасибо за использование программы ;^)»);

Ниже приведен результат работы написанной и откомпилированной программы:

-=Программа вычисления определенного интеграла=-

Введите исходные значения:

Начальное значение x (x1)=0

Конечное значение x (x2)=10

Точность вычисления (e)=0.01

—>Метод средних прямоугольников.

Спасибо за использование программы ;^)

Расчет проверялся для функции , а определенный интеграл брался от 0 до 10, точность 0,01.

В результате расчетов получаем:

Интеграл <2203_8>.

Методом трапеций <2203_9>.

  • Методом средних прямоугольников <2203_10>
  • Также был произведен расчет с точностью 0,1:

    Интеграл <2203_11>.

    Методом трапеций<2203_12>.

  • Методом средних прямоугольников <2203_13>
  • Таким образом очевидно, что при вычислении определенных интегралов методами трапеций и средних прямоугольников не дает нам точного значения, а только приближенное.

    Чем ниже задается численное значение точности вычислений (основание трапеции или прямоугольника, в зависимости от метода), тем точнее результат получаемый машиной. При этом, число итераций составляет обратно пропорциональное от численного значения точности. Следовательно для большей точности необходимо большее число итераций, что обуславливает возрастание затрат времени вычисления интеграла на компьютере обратно пропорционально точности вычисления.

    Использование для вычисления одновременно двух методов (трапеций и средних прямоугольников) позволило исследовать зависимость точности вычислений при применении обоих методов.

    Следовательно при понижении численного значения точности вычислений результаты расчетов по обеим методам стремятся друг к другу и оба к точному результату.

    Вольвачев А.Н., Крисевич В.С. Программирование на языке Паскаль для ПЭВМ ЕС. Минск.: 1989 г.

    Зуев Е.А. Язык программирования Turbo Pascal. М.1992 г.

    Ошибка в тексте? Выдели её мышкой и нажми

    Остались рефераты, курсовые, презентации? Поделись с нами — загрузи их здесь!

    Ссылка на основную публикацию
    Adblock
    detector