Remkomplekty.ru

IT Новости из мира ПК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Жесткие магнитные диски отличаются

Жесткие магнитные диски

Жесткие магнитные диски представляют собой несколько металлических либо керамических дисков, покрытых магнитным слоем. Диски вместе с блоком магнитных головок установлены внутри герметичного корпуса накопителя на жестких магнитных дисках (НЖМД), обычно называемого винчестером.

Термин «винчестер» возник из жаргонного названия первой модели жесткого диска емкостью 16 Кбайт (IBM, 1973гю), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром 30″/30″ известного охотничьего ружья «винчестер». Жесткий диск представляет собой очень сложное устройство с высокоточной механикой и электронной платой, управляющей работой диска.

Структура жестких дисков имеет в целом такую же структуру, как и гибкие магнитные диски.

Магнитные пластины, установленные в накопителе, размещены на одной оси и вращаются с большой угловой скоростью. Обе стороны каждой пластины покрыты тонким слоем намагниченного материалазапись проводится на обе поверхности каждой пластины (кроме крайних).

У каждой магнитной стороны каждой пластины есть своя магнитная головка чтения/записи. Эти головки соединяются вместе и движутся радиально (по радиусу) по отношению к пластинам. Таки образом обеспечивается доступ к любой дорожке любой пластины

За счет использования нескольких магнитных пластин и гораздо большего количества дорожек на каждой стороне пластины информационная емкость жестких дисков может достигать 500 Гбайт.

Также как и НГМД, НЖМД относится к классу носителей с произвольным доступом к информации.

Основные характеристики винчестеров:

  • быстродействие, определяемое временем доступа к нужной информации, временем ее считывания/записи и скоростью передачи данных
  • емкость, то есть максимальданных, который можно записать на носитель;
  • время безотказной работы (обычно составляет примерно 50 лет).

Во всех современных дисковых накопителях устанавливается кэш-буфер (память), ускоряющий обмен данными; чем больше его емкость, тем выше вероятность того, что в кэш-памяти будет необходимая информация, которую не надо считывать с диска (этот процесс в тысячи раз медленней); емкость кэш-буфера в разных устройствах может изменяться в границах от 64 Кбайт до 2Мбайт.

Существуют сменные жесткие диски и, соответственно, дисководы для них. Главным образом они используются для переноса больших объемов информации между компьютерами либо для хранения архивных данных.
Основной тип — Jaz-диск. Его емкость в зависимости от модели от 540 Мбайт до 1,07 Гбайт.

Оптические диски

Оптические (лазерные) диски в настоящее время являются наиболее популярными носителями информации. В них используется оптический принцип записи и считывания информации с помощью лазерного луча.

Информация на лазерном диске записывается на одну спиралевидную дорожку, начинающуюся от центра диска и содержащую чередующиеся участки впадин и выступов с различной отражающей способностью.

При считывании информации с оптических дисков луч лазера, установленного в дисководе, падает на поверхность вращающегося диска и отражается. Так как поверхность оптического диска имеет участки с различными коэффициентами отражения, то отраженный луч также меняет свою интенсивность (логические 0 или 1). Затем отраженные световые импульсы преобразуются с помощью фотоэлементов в электрические импульсы.

В процессе записи информации на оптические диски применяются различные технологии: от простой штамповки до изменения отражающей способности участков поверхности диска с помощью мощного лазера.

Существует два типа оптических дисков:

 CD-диски (CD — Compact Disk, компакт диск), на который может быть записано до 700 Мбайт информации;

 DVD-диски (DVD — Digital Versatile Disk, цифровой универсальный диск), которые имеют значительно большую информационную емкость (4,7 Гбайт), так как оптические дорожки на них имеют меньшую толщину и размещены более плотно.
DVD-диски могут быть двухслойными (емкость 8,5 Гбайт), при этом оба слоя имеют отражающую поверхность, несущую информацию.
Кроме того, информационная емкость DVD-дисков может быть еще удвоена (до 17 Гбайт), так как информация может быть записана на двух сторонах.

В настоящее время (2006 год) на рынок поступили оптические диски (HP DVD и Blu-Ray), информационная емкость которых в 3-5 раз превосходит информационную емкость DVD-дисков за счет использования синего лазера с длиной волны 405 нанометров.

Накопители оптических дисков делятся на три вида:

  • Без возможности записи — CD-ROM и DVD-ROM
    (ROM — Read Only Memory, память только для чтения).
    На дисках CD-ROM и DVD-ROM хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна.
  • С однократной записью и многократным чтением
    CD-R и DVD±R (R — recordable, записываемый).
    На дисках CD-R и DVD±R информация может быть записана, но только один раз. Данные записываются на диск лучом лазера повышенной мощности, который разрушает органический краситель записывающего слоя и меняет его отражательные свойства. Управляя мощностью лазера, на записывающем слое получают чередование темных и светлых пятен, которые при чтении интерпретируются как логические 0 и 1.
  • С возможностью перезаписи — CD-RW и DVD±RW
    (RW — Rewritable, перезаписываемый).На дисках CD-RW и DVD±RW информация может быть записана и стерта многократно.
    Записывающий слой изготавливается из специального сплава, который можно нагреванием приводить в два различных устойчивых агрегатных состояния, которые характеризуются различной степенью прозрачности. При записи (стирании) луч лазера нагревает участок дорожки и переводит его в одно из таких состояний.
    При чтении луч лазера имеет меньшую мощность и не изменяет состояние записывающего слоя, а чередующиеся участки с различной прозрачностью интерпретируются как логические 0 и 1.

· Blu-ray Disc, BD (англ. blue ray — синий луч и disc — диск; написание blu вместо blue — намеренное) — формат оптического носителя, используемый для записи с повышенной плотностью хранения цифровых данных, включая видео высокой чёткости. Стандарт Blu-ray был совместно разработан консорциумом BDA. Первый прототип нового носителя был представлен в октябре 2000 года. Современный вариант представлен на международной выставке потребительской электроники Consumer Electronics Show (CES), которая прошла в январе 2006 года. Коммерческий запуск формата Blu-ray прошёл весной 2006 года.

Blu-ray (букв. «синий луч») получил своё название от использования для записи и чтения коротковолнового(405 нм) «синего» (технически сине-фиолетового) лазера. Буква «e» была намеренно исключена из слова «blue», чтобы получить возможность зарегистрировать товарный знак, так как выражение «blue ray» является часто используемым и не может быть зарегистрировано как товарный знак.

С момента появления формата в 2006 году и до начала 2008 года у Blu-ray существовал серьёзный конкурент — альтернативный формат HD DVD. В течение двух лет многие крупнейшие киностудии, которые изначально поддерживали HD DVD, постепенно перешли на Blu-ray. Warner Brothers, последняя компания, выпускавшая свою продукцию в обоих форматах, отказалась от использования HD DVD в январе 2008 года. 19 февраля того же года Toshiba, создатель формата, прекратила разработки в области HD DVD.

Основные характеристики оптических дисководов:

 емкость диска (CD — до 700 Мбайт, DVD — до 17 Гбайт)

 скорость передачи данных от носителя в оперативную память — измеряется в долях, кратных скорости
150 Кбайт/сек для CD-дисководов (Такая скорость считывания информации была у первых CD-дисководов) и
1,3 Мбайт/сек для DVD-дисководов (Такая скорость считывания информации была у первых DVD-дисководов)

В настоящее время широкое распространение получили 52х-скоростные CD-дисководы — до 7,8 Мбайт/сек.
Запись CD-RW дисков производится на меньшей скорости (например, 32х кратной).
Поэтому CD-дисководы маркируются тремя числами «скорость чтения Х скорость записи CD-R Х скорость записи CD-RW» (например, «52х52х32»).
DVD-дисководы также маркируются тремя числами (например, «16х8х6»

 время доступа — время, нужное для поиска информации на диске, измеряется в миллисекундах (для CD 80-400мс).

При соблюдении правил хранения (хранения в футлярах в вертикальном положении) и эксплуатации (без нанесения царапин и загрязнений) оптические носители могут сохранять информацию в течение десятков лет.

Как выбрать жесткий диск

Когда-то мы гордились жестким диском на компьютере в целых 40 Гб! А сейчас этого может не хватить даже для одного фильма, если говорить об очень высоком качестве.

С развитием технологий, даже современных винчестеров на сотни и тысячи гигабайт уже становится мало. К тому же жесткие диски имеют свой ресурс работы, который рано или поздно заканчивается, поэтому приобретение нового HDD или SSD — лишь вопрос времени. Если вы переживаете за сохранность своей коллекции фильмов, фото, музыки или любой другой информации, то с покупкой лучше не затягивать.

Какой жесткий диск выбрать? Чем отличается HDD от SSD и так ли велика разница? Какой жесткий диск подойдет для работы, а какой для игр? Эти и другие вопросы волнуют любого покупателя — мы постараемся на них ответить.

Разбираемся в основах

Если вы чувствуете, что программы на компьютере начали загружаться неприлично долго, если вы ловите постоянные синие экраны во время работы, появились непонятные подтормаживания — это первые звоночки, намекающие, что пора менять жесткий диск.

Современные носители информации можно условно разделить на те, с которыми удобно работать, и на те, на которых можно ее хранить. Различаются они скоростью работы, «вместительностью» и др.

Читать еще:  Как переразметить жесткий диск

Типы жестких дисков

По объему SSD пока не могут сравниться с HDD. Встречаются модели с объемом 4 Тб, но стоят они неприлично дорого и используются для специальных задач и серверных машин.

В обычном компьютере используют SSD объемом около 320 Гб. Это обусловлено более высокой ценой SSD по сравнению с HDD. Но при этом такой объем позволяет установить на жесткий диск операционную систему, а также наиболее важные программы и игры.

HDD диски — самый распространенный класс жестких дисков. Они существуют давно и со временем прибавляют лишь в способности хранить больше информации. Внутри корпуса такого устройства находятся специальные магнитные диски, на которые и записываются данные.

Запись и чтение информации с дисков осуществляется с помощью специальной считывающей головки. Принцип работы схож со старыми проигрывателями виниловых пластинок, разница лишь в том, что считывающая головка в «винчестере» не касается напрямую магнитного диска из-за возникновения прослойки воздуха при очень быстром вращении пластины.

С одной стороны, HDD способны хранить огромные объемы информации: емкость некоторых моделей достигает 14 Тб (14000 Гб) и это не предел. Еще один плюс — сравнительно небольшая цена, причем чем вместительнее жесткий диск, тем меньше стоимость 1 Гб в его объеме.

С другой стороны их слабость — наличие подвижных деталей в конструкции. Они не отличаются высокими скоростями записи и чтения, поэтому их выгодно использовать просто для хранения информации.

SSD диски — это твердотельные накопители, в которых нет движущихся частей, а запоминающие элементы представлены в виде микросхем.

Принцип работы схож с флешкой, но такие устройства гораздо сложнее и быстрее. Особенно разница в скорости заметна в сравнении с HDD. Если на магнитные диски можно записывать и считывать информацию со скоростью до 220 Мб/с (чаще около 150 Мб/с), то для SSD-накопителей этот показатель может быть в десятки раз выше.

Высокая скорость записи и чтения обеспечивает более быстрый доступ к большим объемам информации во время работы и загрузки приложений. Та же операционная система Windows, установленная на SSD, загружается в 10–15 раз быстрее, чем с HDD.

Многие современные приложения и игры очень сильно нагружают жесткий диск, совершают подгрузки в процессе работы — это может стать причиной очень сильных «тормозов». Для более плавной работы и быстрых загрузок имеет смысл устанавливать ресурсоемкие приложения на SSD.

SSD бесшумны, в то время как HDD могут знатно трещать, особенно после нескольких лет упорной работы под нагрузкой.

Есть легенда, что срок службы SSD значительно меньше, чем HDD. Это связано с тем, что у твердотельных накопителей есть ограниченное количество циклов перезаписи информации. На деле же вам придется сильно постараться, чтобы угробить свой SSD, перезаписывая на него в день сотни гигабайт, но даже в этом случае современный накопитель проживет несколько лет без потери производительности. Если вы покупаете не подвальный ширпотреб, а SSD от надежного производителя, то можете этого не опасаться.

SSHD, или Гибридные диски — мутанты, у которых в корпус обычного HDD-диска встроен твердотельный накопитель с небольшим объемом. Как правило, этого объема достаточно для установки операционной системы. Обозначаются как SSHD. Часто продаются в готовых сборках ПК.

Это интересно: при установке ОС на жестком диске создается специальный файл подкачки. Он выполняет функцию дополнительной виртуальной оперативной памяти, когда установленной в материнскую плату уже не хватает для корректной работы приложений. Проблема в том, что работа с подобным видом памяти требует намного больших скоростей, чем те, которые может обеспечить обычный HDD, из-за чего при недостатке оперативной памяти в компьютере вслед за ней может начать тормозить и жесткий диск. Файл подкачки на SSD позволит работать с памятью куда эффективнее и немного ускорит ваш компьютер, но это решение не является панацеей — при необходимости все же лучше докупить оперативы для своего ПК.

Итак, если вы не хотите заморачиваться с характеристиками жестких дисков, можно быстро выбрать себе девайс по следующей формуле:

  • Для офисного компьютера, на котором не предполагается высоких нагрузок, достаточно HDD небольшого объема, но лучше взять с запасом + 20–30% от нынешних потребностей.
  • Для домашнего компьютера, который будет использоваться для хранения и просмотра фильмов, серфинга в интернете и для игр к HDD лучше докупить SSD с небольшим объемом, на который можно установить операционную систему. Как вариант — приобрести SSHD диск, который удовлетворит потребности любого казуального пользователя.
  • Если вы хардкорный геймер, то для хорошего системного блока лучше обзавестись быстрым и емким HDD, на котором можно хранить обычную информацию и игры (а современные игры весят десятки гигабайт). Особо прожорливые игры лучше установить на SSD, чтобы в процессе не возникало никаких подтормаживаний, влияющих на качество вашего отыгрыша.

Интерфейсы передачи данных и разъемы

Накопители подключаются к материнской плате и к блоку питания с помощью специальных шлейфов. Основной интерфейс, который чаще всего используется для этих целей — SATA.

Старые HDD подключались к материнке с помощью IDE-разъемов, но сейчас такие устройства найти очень сложно. Иногда возникает необходимость подключить IDE-диск к SATA-разъему, но в этом случае вам придется покупать переходник, который не отличается своей дешевизной.

SATA-интерфейсы делятся на 3 вида: SATA 1, SATA 2 и SATA 2.

Отличаются они между собой пропускной способностью: 1.5, 3 и 6 Гбит/с соответственно. Первые две версии считаются устаревающими, и если SATA 2 еще где-то можно встретить, то SATA 1 постепенно уходит в небытие.

Перед тем как покупать жесткий диск, выясните, какой интерфейс в вашей материнской плате. Нет необходимости переплачивать за устройство с современным SATA 3, если он просто не будет поддерживаться вашим ПК. Конечно, физически вы можете подключить более современный разъем к старому SATA 2, потому что они совместимы, но в этом случае ваш жесткий диск будет работать со скоростью в 2 раза меньше заявленной.

Если же вы решили обзавестись хорошим SSD, лучше подключать его через SATA 3-интерфейс, чтобы обеспечить максимальную производительность.

Существует также интерфейс NVMe. С его помощью подключаются к материнской плате твердотельные накопители SSD в слот PCI Express. Пока что подобные накопители не получили широкого распространения.

Питание

Жесткие диски, как HDD, так и SSD нуждаются в дополнительном питании. При покупке нового винчестера или накопителя убедитесь, что у вас есть свободные кабели от блока питания с соответствующими разъемами. Иногда такие кабели с переходниками идут в комплекте вместе с жестким диском, в другом случае их придется докупать отдельно.

В среднем, один жесткий диск потребляет около 7 Вт электроэнергии, SSD более экономичны и «съедают» около 2 Вт, что практически не сказывается на подборе блока питания.

Скорость вращения шпинделя

Этот параметр касается HDD и SSHD (поскольку в SSD нет подвижных частей, т. к. они построены на микросхемах). Магнитные пластины в жестких дисках вращаются на больших скоростях — от этого зависит их производительность.

На протяжении долгого времени выпускались диски со скоростью вращения шпинделя 5400 об/мин, сейчас они уже устаревают. Этой скорости достаточно для выполнения бытовых задач, но в стационарных домашних компьютерах чаще встречаются HDD со скоростью 7200 об/мин. Это золотая середина,позволяющая с комфортом и работать, и играть в не слишком ресурсоемкие игры.

Чем выше скорость вращения шпинделя, тем больше шума издает жесткий диск. Это не очень критично, но в ночное время суток, когда в доме все спят, разницу уловить легко.

В ноутбуках чаще всего используются HDD со скоростью вращения 5400 об/мин. Это делает устройство тише, оно потребляет меньше электроэнергии и меньше нагревается.

HDD будущего: перпендикулярная запись и не только

Что делать? Информационный бум продолжается, терабайт данных уже ни у кого не вызывает трепета. А привычная технология создания жестких дисков достигла физических пределов увеличения плотности записи. Неужели 500 Гбайт – это максимум, что можно поместить на стандартный 3,5-дюймовый жесткий диск ближайшего будущего?

К счастью, нет. Наука не стоит на месте, разрабатываются и находят коммерческое применение совершенно фантастические проекты. С некоторыми из них мы вас сегодня познакомим. Но основной упор будет сделан на фактически готовую к выходу на рынок технологию – перпендикулярную запись. Пора узнать, какими станут жесткие диски в ближайшие 5-10 лет.

Экскурс в прошлое

История накопителей на базе жестких дисков началась в 1952 году, когда корпорация IBM предложила одному из своих ведущих инженеров, Рейнольду Джонсону, возглавить новую исследовательскую лабораторию. В те годы приоритетной задачей был поиск альтернативы чрезвычайно медленным перфокартам и магнитным лентам, требовались высокоемкие накопители информации с произвольным доступом.

Результатом пятилетнего труда команды Рейнольда стало создание в 1955 году накопителя на жестких дисках IBM 350 Disk File, в 1956 году вошедшего в состав IBM RAMAC. Накопитель состоял из 50 дисков диаметром 24 дюйма, вращавшихся со скоростью 1200 об/мин. Среднее время доступа к произвольной ячейке составляло 1 с, плотность – 2 кбит на квадратный дюйм, емкость – 5 Мбайт. Размер накопителя был сравним с двумя современными двухкамерными холодильниками.

Читать еще:  Поскрипывает жесткий диск

Первый HDD емкостью 5 Мбайт

С тех пор плотность записи на пластины возросла более чем в 60 миллионов раз (!), достигнув отметки в 120 Гбит/дюйм 2 .

На протяжении 50 лет технология записи не менялась, а только уменьшались размеры жестких дисков, повышалась скорость вращения шпинделя и емкость пластин. Царствовала параллельная запись.

Технология параллельной записи на магнитные диски

Схема технологии параллельной записи

Данные записываются на диск, покрытый магнитным записывающим слоем. Любой магнитный материал (например, оксид железа) состоит из доменов — областей, внутри которых магнитные моменты всех атомов направлены в одну сторону. Каждый домен имеет большой суммарный момент, который в исходном состоянии может быть направлен произвольно. Под действием внешнего магнитного поля домены могут менять направление магнитного момента.

Именно этот эффект используется при записи. Информация хранится не на одном домене, а на областях (частицах), состоящих минимум из 70-100 «зерен». Если магнитный момент такой частицы совпадает с направлением движения считывающей головки – получаем «0», если противоположен – «1». Так как две соседние области имеют противоположное направление моментов, на границе между ними часть доменов может потерять стабильность и произвольно менять направление магнитного момента. Но об этом позже.

Конструкция считывающей головки

Главной характеристикой магнитной пластины является плотность записи. Она состоит из нескольких показателей: линейная плотность — плотность на один дюйм дорожки (Bits per Inch, BPI), количество дорожек на дюйм диаметра (Tracks per Inch, TPI), и плотность на квадратный дюйм поверхности (areal density, произведение первых двух).

Чтобы увеличить емкость накопителя, можно пойти двумя путями: увеличить количество пластин или увеличить плотность записи на пластину. Первый путь означает значительное усложнение механического устройства накопителя, что зачастую просто невозможно, да и экономически не выгодно. Поэтому основным показателем, определявшим рост емкости жестких дисков за последние 50 лет, являлась плотность записи на пластину.

Уроки масштабирования

Основы масштабирования в магнитной записи точно такие же, как и в теории трехмерного магнитного поля. Если магнитные свойства материалов постоянны, то конфигурация поля остается неизменной при изменении всех токов и размеров во всех плоскостях в s раз. При этом плотность записи также увеличивается в s раз. Однако следует учитывать еще два важных для практического использования фактора: скорость вращения дисков и скорость передачи данных. На практике скорость вращения остается неизменной, скорость передачи данных растет, а токи постепенно уменьшаются, поэтому приходится изобретать новые методы чтения.

В теории, если необходимо увеличить TPI в 2 раза, BPI в 2 раза и areal density в 4 раза, достаточно уменьшить все размеры в 2 раза, сохранить скорость вращения той же и удвоить скорость передачи данных. Если материалы и пропорции сохраняются, то устоявшийся принцип соблюдается.

На практике такой способ масштабирования сталкивается с 3 сложностями:

  • Сохранение или увеличение скорости считывания при увеличении плотности записи может быть невозможно для существующей электроники;
  • Для увеличения производительности приводов приходится увеличивать скорость вращения дисков, что также сказывается на скорости считывания;
  • Уменьшение масштабов уменьшает уровень сигналов чтения, что резко увеличивает шумы в магнитных полях. Уменьшение соотношения сигнал/шум требует создания более чувствительных считывающих головок. Поэтому индустрия перешла от индуктивных головок к магниторезистивным (MR), затем к GMR-головкам, использующим эффект «гигантской магниторезистивности», и даже к TMR-головкам, построенным на туннельном эффекте.

Тем не менее, до последнего времени производители накопителей шли именно таким путем, пока не подошли вплотную к так называемому суперпарамагнитному пределу , который сделал невозможным дальнейшее наращивание плотности традиционными методами.

Суперпарамагнетизм

Как известно из курса физики, свойством любого магнетика является анизотропия. Домен с большим трудом намагничивается в одном направлении, и легко – в противоположном (по «легкой оси»). Его энергия пропорциональна sin 2 θ , где θ — угол между углом намагниченности домена и осью предпочтительного намагничивания. В условиях абсолютного нуля в изолированной системе намагниченный домен занимает положение в одном из состояний с наименьшей энергией (т.е. под углом 0 или 180 градусов). Для представления информации эти положения принимаются за логический ноль или единицу. При изменении направления намагниченности и повышении температуры домен может поменять направленность магнитного момента. Уменьшение размеров частицы в 2 раза означает уменьшение энергетического барьера, который необходимо преодолеть для смены направления, поэтому она становится значительно менее стабильной. Период стабильности может измениться со 100 лет (стабильная частица) до 100 нс (при таком периоде частицу вообще сложно назвать постоянным магнитом). В последнем случае мы получим на пластине огромное количество хаотически расположенных намагниченных частиц, произвольно меняющих свою направленность. Это явление называется суперпарамагнетизмом, потому что макроскопические свойства такой среды похожи на свойства парамагнетиков.

В реальной среде ситуация оказывается еще более сложной. При традиционном методе параллельной записи на диск магнитные частицы располагаются магнитными моментами параллельно плоскости диска. А, как известно, два постоянных магнита, расположенных одинаковыми полюсами друг к другу, отталкиваются, а разными – притягиваются. Значит, между ними тоже происходит энергетическое взаимодействие. У границ намагниченных частиц возникает поле рассеяния, которое забирает энергию у магнитных полей обеих частиц. В результате крайние домены частицы теряют часть заряда и становятся менее стабильными.

Чтобы это преодолеть, ученые предлагают несколько методов, но все они лишь слегка отодвигают парамагнитный предел. Необходимо принципиально новое решение.

Сравнение надежности жестких дисков основных производителей

Страницы материала

Оглавление

Вступление

Выбирая при покупке компьютера жесткий диск, люди чаще всего не задумываются о его надежности. Емкость, цена и скорости записи – этим характеристикам придают значение, а срок службы устройства меряют лишь длительностью гарантии. Как оказалось, зря. Отказоустройчивость жестких дисков сильно отличается в зависимости от производителя. При похожих цене и емкости накопители одной фирмы могут исправно прослужить более 3,5 лет, а другой — с высокой вероятностью выйдут из строя в первые 1,5 года. И если для домашнего компьютера это не так болезненно – максимум «сгорит» архив фотографий с прошлогодней турпоездки, то мертвый винчестер корпоративного сервера парализует работу всей компании и «подарит» проблемы на несколько месяцев вперед. Даже если фирма защищается резервным копированием данных, то все равно, покупая недолговечные жесткие диски, она понесет убытки, связанные с их частой заменой и простоями на ремонт. В лаборатории восстановления информации Storelab.ru решили определить, чьи винчестеры обычно служат дольше всего.

Мера долговечности

Большую часть жестких дисков выпускают 6 поставщиков: Fujitsu/Toshiba, Hitachi, Samsung, Seagate и Western Digital. Чтобы определить, кто же производит самые надежные устройства, мы проанализировали статистику поступлений вышедших из строя винчестеров. Было рассмотрено более 4000 устройств: от персональных компьютеров (формата 3,5”) до ноутбуков (2,5”).

реклама

Оказалось, что две группы данных коррелируют лишь частично. Главное отличие — процент отказавших девайсов у лидера рынка Seagate почти в 2 раза превышает его долю: 56,1% против 31%. Можно сделать поправку на российскую специфику: по собственным данным Seagate, ее доля на отечественном рынке – более 40%. Но кардинально этот факт ситуацию не меняет: процент поступлений «мертвых» дисков значительно выше доли рынка. Это говорит о более низкой надежности винчестеров Seagate по сравнению с другими производителями. У всех остальных поставщиков доля поступлений ниже доли рынка, причем у Western Digital и Hitachi разница составляет почти 11%. Таким образом, устройства этих компаний отличаются более высокой отказоустойчивостью.

Второй важный показатель – средний возраст жестких дисков на момент выхода из строя. Он, опять же, отличается в зависимости от производителя дисков и часто зависит от «удачности» модели. На этапе разработки определить долговечность винчестера сложно. Разработав устройство, компания может провести только лабораторные тесты: на температуру, давление, вибрацию и т.д. Но это исследование, как правило, показывает не все дефекты конструкции. Реальным испытанием на износостойкость остается время. Недоработки становятся явными в течение года-полутора. Если большинство жестких дисков производителя пережили этот рубеж, продукцию можно считать надежной.

реклама

Типичные неисправности жестких дисков

«Муха CC» кусает Seagate

Показатели Seagate портит, главным образом, 7200,11 серия винчестеров Barracuda с высокой емкостью – от 500 Гб до 1,5 Тб. Вряд ли ее можно назвать самой удачной, так как на 11-е приходится 65% всех поступивших в Storelab.ru «мертвых» жестких дисков Seagate. Конструкция устройств серии создана как бы в большой спешке, ее отличают слабые узлы. Кроме того, в серии повышен процент брака. Многие из винчестеров перестали работать в первые 1,5 года после покупки, то есть даже не отслужили своего гарантийного срока.

Это удивительно, учитывая качество винчестеров Seagate других серий. Старые винчестеры Seagate намного надежнее. Поступившие в лабораторию устройства до 7200,10 серии включительно (35% от общего числа) проработали по 3 года и больше.

Читать еще:  Как протестировать жесткий диск

Самая распространенная неисправность 11-й серии – сбой микропрограммы. Во время исполнения через терминал она выдает шестнадцатеричный код ошибки, который предваряется сообщением LED: 000000CC. Из-за него сбой на сленге инженеров получил название «Муха СС». Типичные симптомы появления «Мухи»: компьютер начинает «тормозить» или зависать, и после перезагрузки винчестер уже не определяется системой. Его микрокод саморазрушается.

Клин шпинделя двигателя

Другая часто встречающаяся проблема — клин шпинделя двигателя. Жесткие диски всех производителей регулярно выходят из строя по этой причине. Заклинивает чаще всего устройства с увеличенной емкостью, в которых используется 3 или более магнитных пластин (или «блинов»). Дополнительные «блины» увеличивают нагрузку на ось винчестера, и, чтобы она слегка погнулась, а затем перестала вращаться, достаточно уронить устройство с высоты 20 см. Клин шпинделя можно определить по повышенной вибрации жесткого диска и резкому шуму, похожему на визг.

В серии 7200,12 Seagate использует новую технологию и новые комплектующие, но пока неясно, будет ли она надежнее предыдущей – статистика поломок еще не накоплена.

Деликатно прикрытые Western Digital

Среди неработающих винчестеров Western Digital 59% имели емкость до 500 Гб и средний возраст 3,5 года. Оставшиеся 41% — это диски с емкостью более 500 Гб. Из-за дополнительных «блинов» они менее надежны и в большинстве своем прослужили менее 1,5 лет.

Для дисков WD характерен выход из строя блока магнитных головок (БМГ). Это происходит при перегреве (головки WD капризны при температуре выше 45 градусов Цельсия), а также из-за физического воздействия. Особенность конструкции WD делает эти винчестеры особенно чувствительными к ударам и давлению. В отличие от других поставщиков, WD фиксирует ось с блоком магнитных головок не отдельным винтом, а крышкой устройства. Поэтому если сильно надавить на корпус жесткого диска, крышка может сдвинуться и поменять угол наклона, тогда магнитные головки выйдут к «блинам» под неверным углом. Этого достаточно, чтобы вывести девайс из строя. Кстати, из-за крепления оси двигателя крышкой винчестера WD разобрать и собрать такое устройство в домашних условиях практически невозможно. Чуть меняется зажим болтов крышки – и диск уже не вращается.

За исключением этой уязвимости диски WD достаточно надежны в плане как механики, так и электроники.

Запилы «блинов» у Toshiba/Fujitsu и Samsung

реклама

Поступившие от Toshiba/Fujitsu нерабочие жесткие диски были исключительно формата 2,5 дюйма, для ноутбуков. Средний срок службы такого устройства составил 2 года.

Специфическая болезнь Toshiba – заклинивание оси двигателя из-за неисправности жидкостного подшипника. Самая частая причина поломок — разрушительное воздействие времени. Крышка, которая закрывает ось в HDD от Toshiba, тонкая и часто деформируется. Через мелкие зазоры в ней испаряется смазка подшипника. Постепенно трение усиливается, во втулке появляются заусенцы, и, наконец, в один прекрасный день ось перестает вращаться. Вот тут винчестеру можно помахать рукой на прощание. Клин двигателя – одна из самых серьезных неисправностей, даже восстановить данные после клина удается не всегда.

Кроме того, жесткие диски ноутбуков часто выходят из строя от падений, во время удара случается так называемое залипание блока магнитных головок. Дело в том, что магнитные пластины в винчестере очень точно отшлифованы, настолько точно, что если соединить их вместе, то рассоединить, потянув в разные стороны, уже не получится. Молекулярное притяжение достаточно сильно, чтобы взрослый человек мог только протянуть диски вдоль. Это же притяжение склеивает пластины и считывающие с них информацию магнитные головки. При нормальной работе жесткого диска головки парят над поверхностью «блинов». Их, как крыло, приподнимает воздушный поток от вращения дисков.

реклама

Когда начинается вращение дисков, головки царапают их до полного выхода из строя и потери информации. Пользователь при этом слышит лишь тихое жужжание, винчестер определяется в BIOS, но не работает.

В жестких дисках Samsung контакт блока магнитных головок и «блинов», бывает, происходит и без «помощи» пользователя. Головка винчестера этого производителя устроена так, что иногда самопроизвольно чиркает по поверхности магнитной пластины. Поэтому повреждение БМГ – самая частая причина выхода из строя дисков Samsung.

реклама

Заключение

Производитель самых надежных жестких дисков – корпорация Hitachi. Из более 200 поступивших в лабораторию Storelab.ru неработающих устройств этой фирмы не было ни одного с заводским браком или слабыми узлами. Все неисправности вызваны физическими воздействиями пользователей. Вкупе с самым длинным сроком службы и лучшим соотношением рыночной доли и доли отказов жесткие диски Hitachi могут по праву считаться лидером по отказоустойчивости.

Лидер рынка по продажам Seagate, наоборот, по долговечности устройств уступает остальным производителям, в основном, из-за винчестеров серии 7200.11. Сбор данных о надежности новой серии жестких дисков .12 продолжается.

Жесткий магнитный диск;

Внешние хранители информации

Жесткий магнитный диск(винчестер, HDD – Hard Disk Drive) – постоянная память, предназначена для долговременного хранения всей имеющейся в компьютере информации. Операционная система, постоянно используемые программы загружаются с жесткого диска, на нем хранится большинство документов.

Накопитель на жестком диске (HDD) является одним из ключевых компонентов современного ПК. От него напрямую зависит производительность и надежность системы. Технологии изготовления жестких дисков совершенствуются, размеры программ увеличиваются, данные на компьютере накапливаются.

Устройство жестких дисков (рис.1).

Рис. 1. Устройство жесткого магнитного диска

Жесткий магнитный диск (он же винчестер) состоит из гермоблока и платы электроники. В гермоблоке размещены все механические части, на плате – вся управляющая электроника, за исключением предусилителя (предварительного усилителя), размещенного внутри гермоблока в непосредственной близости от считывающих головок.

В гермоблоке установлен шпиндель с одним или несколькими дисками. Диски изготовлены из алюминия (иногда – из керамики или стекла) и покрыты тонким слоем окиси хрома. В настоящее время объем информации, хранимой на одном диске, может достигать 100 Гбайт.

Сбоку шпинделя находится поворотный позиционер (подобен башенному крану со стрелой-коромыслом). С одной стороны коромысла расположены обращенные к дискам легкие магнитные головки, а с другой – короткий хвостовик с обмоткой электромагнитного привода. При поворотах коромысла позиционера головки совершают движение по дуге между центром и периферией дисков.

Под дисками расположен двигатель, который вращает их с большой скоростью. При вращении дисков создается сильный поток воздуха, который циркулирует по периметру гермоблока. Пыль губительна для поверхности дисков, поэтому блок герметизирован, воздух в нем постоянно очищается специальным фильтром. Для выравнивания давления воздуха внутри и снаружи в крышках гермоблоков делаются небольшие окна, заклеенные тонкой пленкой. В ряде моделей окно закрывается воздухопроницаемым фильтром.

Обмотку позиционера окружает статор, представляющий собой постоянный магнит. При подаче в обмотку тока определенной величины и полярности коромысло начинает поворачиваться в соответствующую сторону с соответствующим ускорением. Динамически изменяя ток в обмотке, можно устанавливать позиционер в любое положение.

При вращении дисков аэродинамическая сила поддерживает головки на небольшом расстоянии от поверхности дисков. Головки никогда не соприкасаются с той зоной поверхности диска, где записаны данные. На хвостовике позиционера обычно расположена так называемая магнитная защелка – маленький постоянный магнит, который при крайнем внутреннем положении головок притягивается к поверхности статора и фиксирует коромысло в этом положении. Это так называемое парковочное положение головок, которые при этом лежат на поверхности диска, соприкасаясь с нею. В посадочной зоне дисков информация не записывается, поэтому прямой контакт с нею не опасен.

Практически все современные жесткие диски выпускаются по технологии, использующей магниторезистивный эффект. Благодаря этому в последний год емкость дисков растет быстрыми темпами за счет повышения плотности записи информации.

Появление в 1999 г. изобретенных фирмой IBM головок с магниторезистивным эффектом (GMR – Giant Magnetic Resistance) привело к повышению плотности записи до 6,4 Гбайт на одну пластину в уже представленных на рынке изделиях.

Основные параметры жесткого диска:

  • Емкость– винчестер имеет объем от 40 Гб до 200 Гб.
  • Скорость чтения данных.Средний сегодняшний показатель – около 8 Мбайт/с.
  • Среднее время доступа.Измеряется в миллисекундах и обозначает то время, которое необходимо диску для доступа к любому выбранному вами участку. Средний показатель – 9 мс.
  • Скорость вращения диска.Показатель, напрямую связанный со скоростью доступа и скоростью чтения данных. Скорость вращения жесткого диска в основном влияет на сокращение среднего времени доступа (поиска). Повышение общей производительности особенно заметно при выборке большого числа файлов.
  • Размер кэш-памяти– быстрой буферной памяти небольшого объема, в которую компьютер помещает наиболее часто используемые данные. У винчестера есть своя кэш-память размером до 8 Мбайт.
  • Фирма-производитель.Освоить современные технологии могут только крупнейшие производители, потому что организация изготовления сложнейших головок, пластин, контроллеров требует крупных финансовых и интеллектуальных затрат. В настоящее время жесткие диски производят семь компаний: Fujitsu, IBM-Hitachi, Maxtor, Samsung, Seagate, Toshiba и Western Digital. При этом каждая модель одного производителя имеет свои, только ей присущие особенности.
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×