Метод половинного деления паскаль - IT Новости из мира ПК
Remkomplekty.ru

IT Новости из мира ПК
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Метод половинного деления паскаль

Метод половинного деления

Домашняя лабораторная работа по теме «Приближенное решение уравнений с одной переменной»

Задание. Найти один из корней уравнения методом деления отрезка пополам (методом Фибоначчи, «золотого сечения», рандомизации) с точностью до : 1) отделить корень на отрезке , проверить его единственность; 2) реализовать один из методов деления отрезка в заданном отношении (использовать ЭВМ или калькулятор); 3) сделать проверку точности найденного решения подстановкой его в исходное уравнение.

Порядок выполнения работы

1) Графическое отделение корня в случае достаточно сложного выражения y=f(х) можно производить следующим образом. Допустим, что уравнение можно представить в виде f1(x) = f2(x). В этом случае строим графики функций у=f1(x) и y=f2(x); абсциссы точек пересечения кривых будут действительными корнями уравнения. Найдем, например, приближенно корни уравнения x-sin x-1 = 0, записав это уравнение в виде x-1 = sin x. Построим графики функций y = sin x и у = х-1 (рис.2). Точка пересечения этих линий имеет абсциссу х ≈ 1,9, что можно считать грубым приближением значения корня.

Интервал [а;b] является интервалом изоляции корня, если его можно считать настолько малым, что на нем лежит точно один корень исходного уравнения. Выбор этого интервала производится на основании свойства непрерывных функций: если функция у=f(x) непрерывна на отрезке [а;b] и на концах отрезка принимает значения разных знаков (f(a)f(b)

Найдем интервал изоляции корня уравнения: х 3 +x 2 -1=0. Для этого представим уравнение в виде: х 3 =1-x 2 , т. е. f(x)=x 3 и g(x)=1-x 2 . Построим приближенно графики функций y=f(x) и y=g(x) (рис 4). Точка пересечения графиков двух функций, а значит, и корень уравнения находится на отрезке [0;1]. Проверим аналитические условия: f(0)=0 3 +0 2 -1=-1 3 +1 2 -1=1>0, и f'(х)=3х²+2x>0 на отрезке [0;1]. Таким образом, мы определили интервал изоляции корня, для нахождения которого достаточно применить любой из аналитических методов численного решения уравнений.

Задача отыскания корней уравнений может считаться практически решенной, если удалось определить корни с нужной степенью точности и указать пределы возможной погрешности.

Метод половинного деления

Рассмотрим один из самых простых численных методов решения уравнений – метод половинного деления. Пусть для уравнения найден интервал изоляции корня – отрезок [а;b]. Для уточнения искомого корня отрезок [а;b] делим пополам и из двух, полученных в результате этого деления отрезков выбираем тот, для которого выполняются условия существования и единственности корня (на концах отрезка функция принимает значения разных знаков). Середину отрезка находим по формуле хi=(a+b)/2, i=1,2,3…, и продолжаем данный процесс пока не достигнем необходимой точности (рис.5).

Рассмотрим применение метода половинного деления на примере решения уравнения х 3 +x 2 -1 = 0 на отрезке [0;1]. Разделим интервал изоляции пополам – это точка х=0,5. Получим два подотрезка – [0;0,5] и [0,5;1]. Вычислим значения функции на концах отрезков, f(0)=-1 3 +0,5 2 -1=0,125+0,25-1=-0,625 3 +1 2 -1=1+1—1=1>0, т. е. на концах отрезка [0,5;1] функция имеет значения разных знаков, следовательно, корень уравнения принадлежит отрезку [0,5;1]. Выбираем этот отрезок для дальнейшего рассмотрения.

Повторяем метод половинного деления уже для нового отрезка. Середина отрезка x=(0,5+1)/2=0,75, и из двух полученных отрезков выбираем правый отрезок [0,75;1], т.к. f(0,75) = -0,015625 0. Процесс продолжается до получения корня с заданной степенью точности.

Если делить отрезок [a;b] сразу на десять частей, то на следующем шаге можно получить отрезок в десять раз меньший, чем [a;b].

2. Метод Фибоначчи

Рассмотрим одну из разновидностей метода половинного деления – метод Фибоначчи.

Пусть дано уравнение , где функция у= непрерывна на и . Для уточнения корня данного уравнения введем последовательность чисел Фибоначчи: , , , это будут числа 1,1,2,3,5,8,13,21 и т.д. Согласно данному методу, на каждом ом этапе отрезок делят в отношении , где и соответственно е и е число из последовательности Фибоначчи. Так на первом шаге отрезок делят в отношении (пополам) и выбирают тот из них, на концах которого функция имеет разные знаки. На втором этапе выбранный суженный отрезок делят в отношении , следующие в отношениях , , В результате получаем на некотором этапе точный корень уравнения, или же бесконечную последовательность отрезков таких, что (n=1,2,…). Формула для вычисления имеет вид: В качестве корня можем принять .

Презентация к уроку «Приближенное решение уравнений. Метод половинного деления»

Как организовать дистанционное обучение во время карантина?

Помогает проект «Инфоурок»

Описание презентации по отдельным слайдам:

ПРИБЛИЖЕННОЕ РЕШЕНИЕ УРАВНЕНИЙ МЕТОД ПОЛОВИННОГО ДЕЛЕНИЯ

ПРИБЛИЖЕННОЕ РЕШЕНИЕ На языке алгебры формальные модели записываются с помощью уравнений, точные решения которых существуют только для некоторых уравнений определенного вида (линейные, квадратные, тригонометрические и др.). Для большинства уравнений приходится использовать методы приближенного решения с заданной точностью.

ГРАФИЧЕСКИЕ МЕТОДЫ Уравнение нельзя решить путем равносильных алгебраических преобразований. Такие решения можно решать приближенно графическими и численными методами. Построим графики функций и

ОТДЕЛЕНИЕ КОРНЕЙ С помощью графиков определяем координаты концов отрезков, содержащих точки пересечения графиков. a=0, b=1,5

Begin clrscr; a:=0; b:=1.5; eps:=0.0001; while abs(f(a)-f(b)) >= eps do begin c:=(a+b)/2; if f(a)*f(c)

  • Марданова Гульсина Насиховна
  • Написать
  • 3803
  • 22.09.2014

Номер материала: 182911092222

Добавляйте авторские материалы и получите призы от Инфоурок

Еженедельный призовой фонд 100 000 Р

  • 22.09.2014
  • 792
  • 22.09.2014
  • 1111
  • 22.09.2014
  • 646
  • 22.09.2014
  • 5533
  • 21.09.2014
  • 1439
  • 21.09.2014
  • 2423

Не нашли то что искали?

Вам будут интересны эти курсы:

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение редакции может не совпадать с точкой зрения авторов.

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако редакция сайта готова оказать всяческую поддержку в решении любых вопросов связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Читать еще:  Ошибка initialization error

Метод половинного деления

Сущность метода половинного деления и шагового метода для решения нелинейных уравнений. Примеры решения нелинейных уравнений и определение их корня в программах в Pascal, Microsoft Excel, MathCAD. Анализ результатов и построение соответствующих графиков.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Теория нелинейных уравнений и метод половинного деления

2. Нахождения корней нелинейного уравнения с заданной точностью

2.2 Microsoft Excel

Наука не стоит на месте и все время развивается. Нередко приходится встречаться с математическими задачами, для решения которых нужно пользоваться громоздкими формулами. Это неудобно. Возникла необходимость в развитии численных методов математического анализа, которые в сегодняшнем дне имеют важнейшее значение. В большинстве случаев численные методы являются приближенными. В ряде случаев численный метод строится на базе бесконечного процесса, который в пределе сводится к искомому решению. Однако реально предельный переход не удается осуществить, и процесс, прерванный на некотором шаге, дает приближенное решение. Одним из таких методов является метод бисекции или метод деления отрезка пополам (Метод половинного деления).

Цель — раскрыть содержание темы «Метод половинного деления». Закрепить ее путем выполнения курсовой работы. Создать программный продукт, который находит отрезок и искомый корень уравнения в этом отрезке при помощи шагового метода. Уточнить корень методом половинного деления.

1. Изучить метод половинного деления и шаговый метод для решения нелинейных уравнений.

2. Научиться решать нелинейные уравнения в Pascal, Microsoft Excel, MathCAD.

3. Решить данное уравнение и найти корни и построить графики.

4. Проанализировать результаты.

5. Сделать выводы.

1. Теория нелинейных уравнений и метод половинного деления

где функция f(x) определена и непрерывна на некотором конечном или бесконечном интервале x . В частности, в форме нелинейных уравнений представляются математические модели анализа статических свойств объектов проектирования или их элементов. Если функция f(x) представляет собой многочлен n-й степени видаa0 + a1 x + a2 x2 + . + anxn, то уравнение (1) называется алгебраическим. Когда x находится под знаком трансцендентной функции (показательной, логарифмической, тригонометрической и т.п.), уравнение называется трансцендентным. Значение аргумента x, при котором функция f(x) обращается в нуль, т.е. f(x*) = 0, называется корнем уравнения.

В общем случае для функции f(x) не существует аналитических формул для нахождения корней. Более того, их точное вычисление не всегда является необходимым. Это объясняется тем, что встречающиеся в инженерной практике уравнения часто содержат коэффициенты, величины которых имеют приближенные значения. В таких случаях решается задача определения корней с некоторой заранее заданной степенью точности.

В дальнейшем предполагаем, что уравнение (1) имеет только изолированные корни, т.е. для каждого из них существует некоторая окрестность, не содержащая других корней этого уравнения. Процесс нахождения изолированных действительных корней нелинейного уравнения включает два этапа:

1) отделение корней, т.е. нахождение интервалов [a, b], внутри которых содержится один и только один корень уравнения;

2) уточнение приближенных значений отдельных корней до заданной степени точности.

Этап отделения корней может быть выполнен различными способами. Во-первых, приближенное значение корня иногда бывает известно из физического смысла задачи. Во-вторых, для отделения корней может использоваться графический способ, основанный на построении графика функции

нелинейный уравнение половинный деление

где приближенные значения действительных корней уравнения f(x) = 0 соответствуют абсциссам точек пересечения или касания графика с осью 0x (y = 0). Наиболее часто применяется метод отделения корней, основанный на следующем положении: если на концах некоторого интервала [a, b] значения непрерывной функции f(x) имеют разные знаки, т.е. f(a)f(b) , то на этом интервале уравнение (1) имеет хотя бы один корень. При этом корень является единственным, если производная функции f'(x) существует и сохраняет постоянный знак внутри интервала [a, b].Рассмотрим простейший алгоритм отделения корней нелинейных уравнений, ориентированный на использование ЭВМ. Исходный интервал [, ], на котором определена и непрерывна функция f(x), разбивается на n отрезков равной длины

(x0, x1), (x1, x2), . (xn -1, xn),где x0 x1 . xn и x0 = , xn =

Затем вычисляются значения функции f(xj) в точках xj (j =) и выбирается отрезок (xi, xi+1), на концах которого функция имеет разные знаки, т.е. f(xi)f(xi+1) 0. Если длина этого отрезка достаточно мала (можно предположить единственность корня), то считается, что корень отделен на интервале [a, b], где a = xi, b = xi+1. В противном случае границы исходного интервала сдвигаются, т.е. = xi, = xi + 1, и процедура повторяется.

Необходимо отметить, что длина исходного интервала [], на котором определена функция f(x), может изменяться в широких пределах. Поэтому число отрезков n, а также длина искомого интервала [a, b] являются переменными величинами, которые должны задаваться в каждом конкретном случае с учетом физического смысла решаемой задачи.

На втором этапе решения нелинейных уравнений полученные приближенные значения корней уточняются различными итерационными методами до некоторой заданной погрешности.

Метод половинного деления. Для этого метода существенно, чтобы функция f(x) была непрерывна и ограничена в заданном интервале [a, b], внутри которого находится корень. Предполагается также, что значения функции на концах интервала f(a) и f(b) имеют разные знаки, т.е. выполняется условие f(a)f(b) .

Обозначим исходный интервал [a, b] как [a0, b0]. Для нахождения корня уравнения f(x) = 0 отрезок [a0, b0] делится пополам, т.е. вычисляется начальное приближение x0 = (a0 + b0)/2. Если f(x0) = 0, то значение x0 = x* является корнем уравнения. В противном случае выбирается один из отрезков [a0, x0] или [x0, b0], на концах которого функция f(x) имеет разные знаки, так как корень лежит в этой половине. Далее выбранный отрезок обозначается как [a1, b1], вновь делится пополам точкой x1 = (a1 + b1)/2 и т.д. В результате на некоторой итерации получается точный корень x* уравнения f(x) = 0, либо бесконечная последовательность вложенных отрезков [a0, b0], [a1, b1], . [ai, bi], . таких, что f(ai)f(bi) (i =1, 2, . ), сходящихся к корню x*.

Читать еще:  Ошибка идентификатор воспроизведения youtube на android

Если требуется определить корень x* с погрешностью , то деление исходного интервала [a, b] продолжают до тех пор, пока длина отрезка [ai, bi] не станет меньше 2, что записывается в форме условия bi — ai 2.

В этом случае середина последнего интервала [ai, bi] с требуемой степенью точности дает приближенное значение корня

Метод половинного деления легко реализуется на ЭВМ и является наиболее универсальным среди итерационных методов уточнения корней. Его применение гарантирует получение решения для любой непрерывной функции f(x), если найден интервал, на котором она изменяет знак. В том случае, когда корни не отделены, будет найден один из корней уравнения. Метод всегда сходится, но скорость сходимости является небольшой, так как за одну итерацию точность увеличивается примерно в два раза. Поэтому на практике метод половинного деления обычно применяется для грубого нахождения корней уравнения, поскольку при повышении требуемой точности значительно возрастает объем вычислений.

2. Нахождение корней нелинейного уравнения

2.1 MathCAD. Шаговый метод

MathCAD. Метод половинного деления

1. Ввести в позиции ввода рабочего аргумента выражение, описывающее функцию

2. Вести граничные значения отрезка изоляции: a:=0 и b:=5

3. Ввести значение данной погрешности: e:=0,001.

4. Выбрать на панели инструментов кнопку «инструменты программирования».

5. Ввести в позиции поля ввода имя новой функции и знак присвоить значение: pol(f,a,b,e):=

6. На панели «Программирование» выбрать «AddLine» — добавить строку программы.

7. В первый темный прямоугольник добавить запись «while», находящуюся на панели«Программирование»:

8. Условие циклы в темном прямоугольнике, стоящем после while: |b-a|>e.

9. В следующем темном прямоугольнике, расположенным под while, задать тело цикла: добавить строку программы, в первом темном прямоугольнике ввести:

Для ввода использовать кнопку «Локальное присвоение» на панели «Программирование»:

10. В следующем темном прямоугольнике, прежде чем вводить выражение, добавить строку программы, а затем в нем же ввести выражение:

(функцию if выбрать на панели «Программирование» перед тем как вводить выражение).

11. Затем строкой ниже ввести:

(данную функцию выбрать на панели «Программирование» перед тем как вводить выражение).

12. В самом нижнем темном прямоугольнике ввести переменную вывода: c.

13. В поле ввода, под программой, набрать pol(f,a,b,e), затем нажать знак равенства.

2.3 Microsoft Excel. Шаговый метод

Microsoft Excel. Метод половинного деления

1. Заполнить ячейки A1:H1 последовательно следующим образом: a, b, c=(a+b)/2, f(a), f(b), f(c), |b-a| d;

Метод половинного деления;

Методы уточнения корней

После того как найден интервал, содержащий корень, применяют итерационные методы уточнения корня с заданной точностью.

Метод половинного деления (другие названия: метод бисекций, метод дихотомии) для решения уравнения f(x) = 0 заключается в следующем [7, 9]. Пусть известно, что функция непрерывна и принимает на концах отрезка
[a, b] значения разных знаков, тогда корень содержится в интервале (a, b). Разделим интервал на две половины и дальше будем рассматривать ту половину, на концах которой функция принимает значения разных знаков. Этот новый отрезок снова делим на две равные части и выбираем из них ту, которая содержит корень. Этот процесс продолжается до тех пор, пока длина очередного отрезка не станет меньше требуемой величины погрешности. Более строгое изложение алгоритма метода половинного деления:

2) Если f(x) = 0, то переходим к пункту 5;

3) Если f(x)∙ f(a) ε, переходим к пункту 1;

5) Выводим значение x;

Пример 2.4. Уточнить методом бисекций с точностью до 0,01 корень уравнения (x – 1) 3 = 0, принадлежащий отрезку [0,95; 1,1].

Решение в программе Excel:

1) В ячейках A1:F4 введем обозначения, начальные значения и формулы, как показано в таблице 2.3.

2) Каждую формулу скопируем в нижние ячейки маркером заполнения до десятой строки, т.е. B4 — до B10, C4 — до C10, D3 — до D10, E4 — до E10, F3 — до F10.

Результаты расчетов приведены в табл. 2.4. В столбце F проверяем значения длины интервала ba. Если значение меньше чем 0,01, то в данной строке найдено приближенное значение корня с заданной погрешностью. Потребовалось 5 итераций для достижения требуемой точности. Приближенное значение корня с точностью до 0,01 после округления до трех знаков равно 1,0015625 ≈ 1,00.

Приведенный алгоритм учитывает возможный случай «попадания в корень», т.е. равенство f(x) нулю на очередном этапе. Если в примере 2.3 взять отрезок [0,9; 1,1], то на первом же шаге попадаем в корень x = 1. Действительно, запишем в ячейке B3 значение 0,9. Тогда таблица результатов примет вид 2.5 (приведены только 2 итерации).

Создадим в программе Excel пользовательские функции f(x) и bisect(a, b, eps) для решения уравнения методом половинного деления, пользуясь встроенным языком Visual Basic. Их описания приведены ниже:

Function f(Byval x)

Function bisect(a, b, eps)

If f(x) = 0 Then GoTo 5

If f(x) * f(a) eps Then GoTo 1

Функция f(x) определяет левую часть уравнения, а функция
bisect(a, b, eps) вычисляет методом половинного деления корень уравнения f(x) = 0. Обратим внимание на то, что в функции bisect(a, b, eps) используется обращение к функции f(x). Приведем алгоритм создания пользователькой функции:

Читать еще:  Произошла ошибка при распаковке 11

1) Выполним команду меню «Сервис — Макрос — Редактор Visual Basic». Откроется окно «Microsoft Visual Basic». Если в данном файле программы Excel ещё не были созданы макросы или пользовательские функции или процедуры, это окно будет иметь вид, изображенный на рис.2.4.

2) Выполним команду меню «Insert — Module» и вводим тексты программ-функции, как показано на рис 2.5.

Теперь в ячейках листа программы Excel можно в формулах использовать созданные функции. Например, введем в ячейку D18 формулу

то получим значение 0,999993896.

Чтобы решить другое уравнение (с другой левой частью) нужно перейти в окно редактора с помощью команды «Сервис — Макрос — Редактор Visual Basic» и просто переписать описание функции f(x). Например, найдем с точностью до 0,001 корень уравнения sin5x + x 2 – 1 = 0, принадлежащий интервалу (0,4; 0,5). Для этого изменим описание функции

на новое описание

f = Sin(5 * x) + x ^ 2 — 1

Тогда в ячейке D18 получим значение 0,441009521 (сравните этот результат со значением корня из интервала (0,4; 0,5), найденным в примере 2.3!).

Для решения уравнения методом половинного деления в программе Mathcad создадим подпрограмму-функцию bisec(f, a, b, ε), где:

f — имя функции, соответствующее левой части уравнения f(x) = 0;

a, b — левый и правый концы отрезка [a, b];

ε — точность приближенного значения корня.

Решение примера в программе Mathcad:

1) Запускаем программу Mathcad. Введем определение функции bisec(f, a, b, ε). Для этого с помощью клавиатуры и панели инструментов «Греческие символы» набираем bisec(f, a, b, ε):=. После знака присваивания «:=» на панели инструментов «Программирование» указателем мыши щелкаем левой кнопкой «Add line». После знака присваивания появится вертикальная линия. Далее вводим текст программы, который приведен ниже, используя панель инструментов «Программирование» для ввода знака «←», оператора цикла while, оператора break и условного оператора if otherwise.

2) Введем определение функции f(x):=sin(5*x)+x^2–1, а затем вычислим значение корня с помощью функции bisec при заданных значениях:
bisec(f, –0.8,–0.7,0.0001)=. После знака «=» автоматически появится вычисленное программой значение корня –0,7266601563. Аналогично вычислим остальные корни.

Ниже приведен лист Mathcad с определением функции bisec(f, a, b, ε) и расчетами:

Метод половинного деления

Автор работы: Сергей Лищинский, 01 Июня 2010 в 16:18, курсовая работа

Краткое описание

Паскаль − один из наиболее распространенных процедурно-ориентированных языков программирования 80 — 90-х годов, имеет свою достаточно интересную историю, начало которой положило объявление в 1965 г. конкурса по созданию нового языка программирования — преемника Алгола — 60. Участие в конкурсе принял швейцарский ученый Николаус Вирт, который работал на факультете информатики Стэндфордского университета. Проект, предложенный им, был отвергнут комиссией в 1967 г. Но Вирт не прекратил работу. Вернувшись в Швейцарию, совместно с сотрудниками Швейцарского федерального института технологии в Цюрихе, он уже в 1968 г. разработал новую версию языка Паскаль, названного так в честь великого французского математика и механика Блеза Паскаля, создавшего в 1642 г. первую счетную машину. В 1971 г. Н. Вирт выпустил описание своего языка, а в 1975 г. было разработано руководство для пользователей версии Паскаля, которая практически легла в основу стандарта языка. Но стандарт языка появился только в 1982 г.

Содержание работы

введение 4
1. постановка задачи 5
2. метод половинного деления 6
3 .соответствие между переменными, принятыми при описании задачи и в програме 9
4. структурная схема программ и ее описание 12
5. листинг програмы 20
6. контрольный пример и анализ результата 21
7. инструкция пользователя 26
заключение 27
список литературы 28
приложения 29
приложение а 30
приложение б. 32
приложение д. 33

Содержимое работы — 1 файл

Курсовой метод половинного деления.doc

ВВЕДЕНИЕ

Паскаль − один из наиболее распространенных процедурно-ориентированных языков программирования 80 — 90-х годов, имеет свою достаточно интересную историю, начало которой положило объявление в 1965 г. конкурса по созданию нового языка программирования — преемника Алгола — 60. Участие в конкурсе принял швейцарский ученый Николаус Вирт, который работал на факультете информатики Стэндфордского университета. Проект, предложенный им, был отвергнут комиссией в 1967 г. Но Вирт не прекратил работу. Вернувшись в Швейцарию, совместно с сотрудниками Швейцарского федерального института технологии в Цюрихе, он уже в 1968 г. разработал новую версию языка Паскаль, названного так в честь великого французского математика и механика Блеза Паскаля, создавшего в 1642 г. первую счетную машину. В 1971 г. Н. Вирт выпустил описание своего языка, а в 1975 г. было разработано руководство для пользователей версии Паскаля, которая практически легла в основу стандарта языка. Но стандарт языка появился только в 1982 г.

Предназначенный для обучения, язык оказался очень простым и одновременно строгим. Однако вскоре выяснилось, что он также является достаточно эффективным в самых различных приложениях. Pascal поддерживает самые современные методологии проектирования программ (нисходящее, модульное проектирование, структурное программирование). В связи с этим появились многочисленные реализации языка для разных машинных архитектур и наиболее удачной и популярной оказалась разработка фирмы Borland International для персональных IBM — совместимых ЭВМ. Эта реализация языка получила название Turbo Pascal (Турбо Паскаль) и имеет уже несколько версий.

Turbo Pascal представляет собой систему программирования, включающую в себя текстовый редактор, компилятор, компоновщик, загрузчик, отладчик, файловую систему, системную библиотеку, справочную систему. Все эти компоненты объединены в интегрированную среду с многооконным интерфейсом и развитой системой меню, что обеспечивает высокую производительность труда программиста при создании программ производственного, научного и коммерческого назначения.

1. ПОСТАНОВКА ЗАДАЧИ

Написать программу на языке программирования Pascal, выполняющую решение нелинейного уравнения. Результат работы программы должен выводиться на экран и в файл.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×