Вектор тангенциального ускорения
Ускорение
Ускорение – это величина, которая характеризует быстроту изменения скорости.
Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).
Среднее ускорение
Среднее ускорение> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:
где – вектор ускорения.
Направление вектора ускорения совпадает с направлением изменения скорости Δ =
—
(здесь
– это начальная скорость, то есть скорость, с которой тело начало ускоряться).
В момент времени t1 (см. рис 1.8) тело имеет скорость . В момент времени t2 тело имеет скорость
. Согласно правилу вычитания векторов найдём вектор изменения скорости Δ
=
—
. Тогда определить ускорение можно так:
Рис. 1.8. Среднее ускорение.
В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть
Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.
Мгновенное ускорение
Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:
Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями аХ, aY, aZ).
При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть а направление вектора ускорения совпадает с вектором скорости 2.
Если скорость тела по модулю уменьшается, то есть то направление вектора ускорения противоположно направлению вектора скорости 2. Иначе говоря, в данном случае происходит замедление движения, при этом ускорение будет отрицательным (а
Рис. 1.9. Мгновенное ускорение.
При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).
Тангенциальное ускорение
Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.
Рис. 1.10. Тангенциальное ускорение.
Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.
Нормальное ускорение
Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.
Полное ускорение
Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:
(согласно теореме Пифагора для прямоугольно прямоугольника).
Направление полного ускорения также определяется правилом сложения векторов:
Вывод формулы для нормального и тангенциального ускорения;
Кинематика
Информационно-справочные и поисковые системы
Базы данных, Интернет-ресурсы,
1. Единое окно доступа к образовательным ресурсам. Электронная библиотека [Электронный ресурс]: инф. система. – М.: ФГАУ ГНИИ ИТТ «Информика», 2005-2012. – Режим доступа: //www. http://window.edu.ru, свободный. – Загл. с экрана (дата обращения 11.04.2012)
2. Интернет-университет информационных технологий – дистанционное образование – INTUIT.ru [Электронный ресурс]: офиц. сайт. – М.: Открытые системы, 2003-2011. — Режим доступа: http://www.intuit.ru, свободный. — Загл. с экрана (дата обращения: 17.05.2012).
3. Консультант Плюс 1997-2012 [Электронный ресурс]: справочно-поисковая система.- Режим доступа: http://www.consultant.ru/?utm_source=sps
4. Поисковые системы: Google, Yandex, Rambler
5. Электронная библиотечная система «Издательство «Лань» [Электронный ресурс] – Режим доступа: www URL: http://e.lanbook.com/ — 25/08/2010
6. Электронная библиотечная система «Университетская библиотека онлайн» [Электронный ресурс] – Режим доступа: www URL: http://www.biblioclub.ru/ — 25/08/2010
При любом движении точки, кроме равномерного прямолинейного движения, скорость точки изменяется. Для характеристики быстроты изменения скорости точки в механике вводится векторная физическая величина, называемая ускорением.
Ускорением называется вектор а, равный первой производной по времени t от скорости этой точки;
Ускорение точки равно также второй производной по времени от радиус-вектора r этой точки:
Поскольку вектор ускорения при криволинейном движении сориентирован по отношению к скорости под произвольным углом, то разложим его на нормальную и тангенциальную составляющие:
a = an + at = an·n +at·t.
Определим величину, направление и роль в изменении скорости нормального ускорения. Предположим, что:
a = an.
du = a·dt = an·dt.
Таким образом, вектор приращения скорости параллелен вектору нормального ускорения. Поскольку нормаль n перпендикулярна t, а, следовательно, и вектору скорости, то всегда вектор приращения скорости также перпендикулярен v. В данном случае годограф представляет из себя окружность, и скорость изменяется только по направлению, сохраняясь неизменной по величине. Следовательно, направление вектора приращения скорости совпадает с вектором n.
Величину вектора an можно рассчитать из простых геометрических соображений.
Путь ds, пройденный частицей за время dt, можно рассчитать двумя способами:
ds = u·dt;
Учтя, что угол du = u·da, получим:
или в векторном виде
an = u 2 /R·n.
Нормальное ускорение характеризует изменение скорости по направлению. Вектор нормального ускорения равен
an = u 2 /R·n.
Определим величину, направление и роль в изменении скорости тангенциального ускорения. Предположим, что a = at.
du = a·dt = at·dt.
Следовательно, в данном случае вектор приращения скорости параллелен вектору тангенциального ускорения. Вектора приращения скорости и тангенциального ускорения также направлены вдоль t.
Поскольку направление вектора скорости не изменяется с течением времени, то модуль приращения вектора скорости |du| равен приращению модуля вектора скорости d|u| = du и
at = du/dt.
Тангенциальное ускорение характеризует изменение скорости по величине. Вектор тангенциального ускорения равенat = du/dt·t.
В общем случае, когда скорость изменяется по величине и направлению значение модуля вектора ускорения равно:
.
Сам вектор полного ускорения состоит из суммы двух слагаемых:
a = d(u·t)/dt = du/dt·t + u·dt/dt.
Первое слагаемое представляет собой его тангенциальную составляющую, а второе — нормальную составляющую, причем dt/dt = u/R·n.
Нормальное ускорение точки характеризует быстроту изменения направления вектора скорости точки. Нормальное ускорение направлено всегда к центру кривизны траектории, так что его проекция на главную нормаль nне может быть отрицательной:
По этой причине нормальное ускорение точки часто называют также центростремительным ускорением. Нормальное ускорение точки равно нулю только в том случае, если точка движется прямолинейно.
Тангенциальное ускорение
Виды ускорений в СТО.
Итак, мы показали, что существует два вида измеримых скоростей. Кроме того, быстрота, измеряемая в тех же единицах, тоже очень интересна. При малых значениях все эти скорости равны.
А сколько же существует ускорений? Какое ускорение должно быть константой при равноускоренном движении релятивистской ракеты, чтобы космонавт всегда оказывал на пол ракеты одну и ту же силу, чтобы он не стал невесомым, или чтобы он не умер от перегрузок?
Введем определения разных видов ускорений.
Координатно-координатное ускорение dv/dt это изменение координатной скорости, измеренное по синхронизированным координатным часам, расставленным по ходу движения пробного тела:
Забегая вперед, заметим , что dv/dt = 1·dv/dt = g 0 dv/dt.
Координатно-собственное ускорение dv/dt это изменение координатнойскорости, измеренное по собственным часам, связанным с движущимся телом:
Собственно-координатное ускорение db/dt это изменение собственной скорости, измеренное по синхронизированным координатным часам, расставленным по ходу движения пробного тела:
Собственно-собственное ускорениеdb/dt это изменение собственнойскорости, измеренное пособственным часам, связанным с движущимся телом:
db/dt = d(dr/dt)/dt = g 4 v(vdv/dt)/c 2 + g 2 dv/dt.
Если v|| dv/dt, тогдаdb/dt = g 4 dv/dt.
Если vперпендикулярно dv/dt, тогда db/dt = g 2 dv/dt.
Сравнивая показатели при коэффициенте g в четырех типах ускорений, записанных выше, замечаем, что в этой группе отсутствует член с коэффициентом g 2 при параллельных ускорениях. Но мы еще не взяли производные от быстроты. Это ведь тоже скорость. Возьмём производную по времени от быстроты, воспользовавшись формулой v/c = th(r/c):
dr/dt = (c·arth(v/c))’ = g 2 dv/dt.
А если взять dr/dt, получим:
Следовательно, мы имеем две измеримые скорости v и b, и ещё одну, неизмеримую, но наиболее симметричную, быстроту r. И шесть видов ускорений, два из которых dr/dt и db/dt совпадают. Какое же из этих ускорений является собственным, т.е. ощущаемым ускоряющимся телом?
К собственному ускорению мы вернемся ниже, а пока выясним, какое ускорение входит во второй закон Ньютона. Как известно, в релятивистской механике второй закон механики, записанный в видеf=ma, оказывается ошибочным. Вместо него силу и ускорение связывает уравнение
которое является основой для инженерных расчетов релятивистских ускорителей. Если мы сравним это уравнение с только что полученным уравнением для ускорения db/dt:
то заметим, что они отличаются лишь множителем m. То есть, можно записать:
Последнее уравнение возвращает массе статус меры инертности в релятивистской механике. Сила, действующая на тело, пропорциональна ускорению db/dt. Коэффициентом пропорциональности является инвариантная масса. Вектора силы fиускорение db/dt сонаправлены при любой ориентации векторов vиa, или b и db/dt.
Формула, записанная через ускорение dv/dt, не дает такой пропорциональности. Сила и координатно-координатное ускорение в общем случае не совпадают по направлению. Параллельными они будут лишь в двух случаях: если вектора vиdv/dtпараллельны друг другу, и если они перпендикулярны друг другу. Но в первом случае сила f=mg 3 dv/dt, а во втором — f=mgdv/dt.
Таким образом, в законе Ньютона мы должны использовать ускорение db/dt, то есть, изменениесобственной скоростиb, измеренное по синхронизированным часам.
Возможно с таким же успехом можно будет доказать, что f= mdr/dt, где dr/dt — вектор собственного убыстрения, но быстрота величина неизмеримая, хотя и легко вычисляема. Будет ли верно векторное равенство, сказать не берусь, но скалярное равенство справедливо в силу того, что dr/dt=db/dt и f=mdb/dt.
Ускорение – это величина, которая характеризует быстроту изменения скорости.
Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).
Среднее ускорение
Среднее ускорение> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:
где – вектор ускорения.
Направление вектора ускорения совпадает с направлением изменения скорости Δ =
—
(здесь
– это начальная скорость, то есть скорость, с которой тело начало ускоряться).
В момент времени t1 (см. рис 1.8) тело имеет скорость . В момент времени t2 тело имеет скорость
. Согласно правилу вычитания векторов найдём вектор изменения скорости Δ
=
—
. Тогда определить ускорение можно так:
Рис. 1.8. Среднее ускорение.
В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть
Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.
Мгновенное ускорение
Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:
Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями аХ, aY, aZ).
При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть
а направление вектора ускорения совпадает с вектором скорости 2.
Если скорость тела по модулю уменьшается, то есть
§ 1.27. Тангенциальное, нормальное и полное ускорения
Ускорение при неравномерном криволинейном движении
Пусть в некоторый момент времени t точка занимает положение А (рис. 1.83, а) и имеет скорость v1, a спустя малое время Δt точка переместилась в положение В1 приобретя скорость v2.
Разложим вектор изменения скорости Δ на составляющие Δ
τ и Δ
n (рис. 1.83, б). Первая составляющая направлена по скорости
1 т. е. по касательной к траектории, проведенной в точке А. Она называется тангенциальной (касательной) составляющей вектора Δ
. Составляющая Δ
n ⊥
1. Поэтому Δ
n называется нормальной составляющей приращения скорости Δ
. По правилу сложения векторов
Δ = Δ
τ + Δ
n.
Разделим почленно это равенство на Δt и перейдем к пределу при стремлении Δt -» 0:
Каждое слагаемое этого равенства есть составляющая ускорения (см. § 1.15). Левая часть равенства (1.27.1) является полным ускорением точки. Первое слагаемое в правой части называется тангенциальным (касательным) ускорением, второе слагаемое — уже знакомое нам нормальное ускорение.
Тангенциальное ускорение направлено по касательной к траектории, так как t ↑↑
. При ускоренном движении точки (модуль скорости возрастает) касательное ускорение имеет то же направление, что и скорость. При замедленном движении оно направлено противоположно скорости. Тангенциальное ускорение характеризует быстроту изменения модуля скорости. Нормальное ускорение ап перпендикулярно скорости и характеризует быстроту изменения направления скорости.
Полное ускорение точки равно сумме тангенциального и нормального ускорений:
На рисунке 1.84, а изображен случай ускоренного движения, а на рисунке 1.84, б — замедленного движения точки.
Модуль нормального ускорения
Мы нашли, как направлены тангенциальное и нормальное ускорения. Выражение для модуля нормального ускорения при движении по окружности радиусом r нам известно:
Если движение происходит вдоль произвольной кривой, то под r надо понимать радиус кривизны траектории в данной точке. Выясним, что такое радиус кривизны кривой линии в точке. Выберем на кривой АВ вблизи точки М с обеих сторон от нее еще две точки: К и L (рис. 1.85). Через три точки К, М и L можно провести единственную окружность. Если точки К и L приближать к точке М, каждый раз проводя через эти три точки окружность, то мы получим серию окружностей разных радиусов, дуги которых вблизи точки М все меньше и меньше будут отличаться от кривой АВ.
В пределе, когда точки К и L сколь угодно близко подходят к точке М, радиус проходящей через них окружности также стремится к предельному значению. Это предельное значение радиусов окружностей и называется радиусом кривизны кривой АВ в точке М.
Модуль тангенциального и полного ускорений
Модуль тангенциального ускорения равен
где dv — приращение модуля скорости за бесконечно малый интервал времени dt. Модуль полного ускорения а. точки можно найти по теореме Пифагора (см. рис. 1.84, а, б):
Полное ускорение направлено по секущей в сторону вогнутости траектории.
Классификация движений
По значениям, которые принимают нормальное и тангенциальное ускорения, можно классифицировать различные движения точки.
Если аn = 0, то при любых значениях скорости движение точки происходит по прямой линии. Эту прямую можно рассматривать как окружность бесконечно большого радиуса (г —> ∞).
Если аt = 0 и аn = 0, но скорость отлична от нуля, то движение по прямой будет равномерным, так как не меняется модуль скорости.
В случае аn ≠ 0 движение точки криволинейное, так как меняется направление скорости. Когда аn ≠ 0, аt = 0, то при движении по кривой линии модуль скорости точки не изменяется — точка движется равномерно.
Если аt = 0, аn = const, то точка совершает равномерное движение по окружности.
И наконец, когда оба ускорения 1 и
n отличны от нуля, то точка движется неравномерно по криволинейной траектории.
В заключение заметим, что если точка движется равномерно по криволинейной траектории, то можно вычислить путь, пройденный точкой, по формуле s = vt.
При произвольном движении вектор ускорения направлен внутрь траектории. Тангенциальная составляющая этого вектора характеризует изменение скорости по модулю, а нормальная составляющая — по направлению.
Кинематика материальной точки
Основные формулы кинематики материальной точки
Приведем основные формулы кинематики материальной точки. После чего дадим их вывод и изложение теории.
Радиус-вектор материальной точки M в прямоугольной системе координат Oxyz :
,
где – единичные векторы (орты) в направлении осей x, y, z .
Скорость точки:
;
;
;
Единичный вектор в направлении касательной к траектории точки:
.
Вектор можно выбрать двумя способами во взаимно противоположных направлениях. Обычно его выбирают в направлении увеличения дуговой координаты. Тогда, наряду с модулем скорости , вводят алгебраическую величину скорости . При , вектор скорости сонаправлен с . При – имеет противоположное с направление.
Тангенциальное (касательное) ускорение:
;
;
.
Здесь, как и для скорости, – это алгебраическое касательное ускорение, . Если , то вектор касательного ускорения сонаправлен с . При – имеет противоположное с направление.
Единичный вектор, направленный к центру кривизны траектории точки (вдоль главной нормали):
.
Радиус кривизны траектории:
.
Далее приводится вывод этих формул и изложение теории кинематики материальной точки.
Радиус-вектор и траектория точки
Рассмотрим движение материальной точки M . Выберем неподвижную прямоугольную систему координат Oxyz с центром в некоторой неподвижной точке O . Тогда положение точки M однозначно определяются ее координатами ( x, y, z ) . Эти координаты являются компонентами радиус-вектора материальной точки.
Радиус-вектор точки M – это вектор , проведенный из начала неподвижной системы координат O в точку M .
,
где – единичные векторы в направлении осей x, y, z .
При движении точки, координаты изменяются со временем . То есть они являются функциями от времени . Тогда систему уравнений
(1)
можно рассматривать как уравнение кривой, заданной параметрическими уравнениями. Такая кривая является траекторией точки.
Траектория материальной точки – это линия, вдоль которой происходит движение точки.
Если движение точки происходит в плоскости, то можно выбрать оси и системы координат так, чтобы они лежали в этой плоскости. Тогда траектория определяется двумя уравнениями
В некоторых случаях, из этих уравнений можно исключить время . Тогда уравнение траектории будет иметь зависимость вида:
,
где – некоторая функция. Эта зависимость содержит только переменные и . Она не содержит параметр .
Скорость материальной точки
Согласно определению скорости и определению производной:
Производные по времени, в механике, обозначают точкой над символом. Подставим сюда выражение для радиус-вектора:
,
где мы явно обозначили зависимость координат от времени. Получаем:
– проекции скорости на оси координат. Они получаются дифференцированием по времени компонент радиус-вектора
.
Таким образом
.
Модуль скорости:
.
Касательная к траектории
С математической точки зрения, систему уравнений (1) можно рассматривать как уравнение линии (кривой), заданной параметрическими уравнениями. Время , при таком рассмотрении, играет роль параметра. Из курса математического анализа известно, что направляющий вектор для касательной к этой кривой имеет компоненты:
.
Но это есть компоненты вектора скорости точки. То есть скорость материальной точки направлена по касательной к траектории.
Все это можно продемонстрировать непосредственно. Пусть в момент времени точка находится в положении с радиус-вектором (см. рисунок). А в момент времени – в положении с радиус-вектором . Через точки и проведем прямую . По определению, касательная – это такая прямая , к которой стремится прямая при .
Введем обозначения:
;
;
.
Тогда вектор направлен вдоль прямой .
При стремлении , прямая стремится к касательной , а вектор – к скорости точки в момент времени :
.
Поскольку вектор направлен вдоль прямой , а прямая при , то вектор скорости направлен вдоль касательной .
То есть вектор скорости материальной точки направлен вдоль касательной к траектории.
Введем направляющий вектор касательной единичной длины:
.
Покажем, что длина этого вектора равна единице. Действительно, поскольку
, то:
.
Здесь мы направили вектор по направлению к вектору скорости, поскольку это более удобно. Но могут возникнуть случаи, когда точка останавливается и движется по той же траектории в обратном направлении. Чтобы не вводить для одной и той же точки траектории два единичных касательных вектора, нужно охватить случай, когда направлен противоположно скорости. Для этого вводят алгебраическую величину скорости:
.
Если направления векторов и совпадают, то . Если они противоположны, то .
– это проекция скорости на направление единичного вектора . Она равна скалярному произведению этих векторов:
.
Абсолютную величину (модуль) вектора скорости мы обозначаем символом с прямыми скобками, или символом без стрелки:
;
Алгебраическая величина скорости:
.
Тогда вектор скорости точки можно представить в следующем виде:
.
Ускорение материальной точки
Аналогично предыдущему, получаем компоненты ускорения (проекции ускорения на оси координат):
;
;
;
.
Модуль ускорения:
.
Тангенциальное (касательное) и нормальное ускорения
Теперь рассмотрим вопрос о направлении вектора ускорения по отношению к траектории. Для этого применим формулу:
.
Дифференцируем ее по времени, применяя правило дифференцирования произведения:
.
Вектор направлен по касательной к траектории. В какую сторону направлена его производная по времени ?
Чтобы ответить на этот вопрос, воспользуемся тем, что длина вектора постоянна и равна единице. Тогда квадрат его длины тоже равен единице:
.
Здесь и далее, два вектора в круглых скобках обозначают их скалярное произведение. Продифференцируем последнее уравнение по времени:
;
;
.
Поскольку скалярное произведение векторов и равно нулю, то эти векторы перпендикулярны друг другу. Так как вектор направлен по касательной к траектории, то вектор перпендикулярен к касательной.
Первую компоненту называют тангенциальным или касательным ускорением:
.
Вторую компоненту называют нормальным ускорением:
.
Тогда полное ускорение:
(2) .
Эта формула представляет собой разложение ускорения на две взаимно перпендикулярные компоненты – касательную к траектории и перпендикулярную к ней.
Тангенциальное (касательное) ускорение
Также как и для скорости, введем алгебраическую величину вектора касательного ускорения :
.
Если , то вектор касательного ускорения сонаправлен с . Если , то эти векторы противоположны. Абсолютную величину касательного ускорения будем обозначать прямыми скобками: . Тогда
.
Умножим обе части уравнения (2) скалярно на :
.
Поскольку , то . Тогда
;
.
Здесь мы положили: .
Отсюда видно, что алгебраическая величина тангенциального ускорения равна проекции полного ускорения на направление касательной к траектории. Она также равна производной по времени алгебраической величины скорости точки: .
Подставив , имеем:
.
Здесь мы учли, что .
Найдем производную по времени модуля скорости . Применяем правила дифференцирования:
Итак,
.
Отсюда следует, что если между векторами ускорения и скорости острый угол: , то движение ускоренное. Абсолютное значение скорости возрастает. Если между ними тупой угол: , то движение замедленное. Абсолютное значение скорости убывает.
Выразим ускорение через тангенциальное и нормальное: , и учтем, что . Получим:
.
Тогда предыдущую формулировку можно выразить посредством тангенциального ускорения. Если векторы касательного ускорения и скорости направлены в одну сторону, то движение ускоренное. Если их направления противоположны, то движение замедленное.
Радиус кривизны траектории
Теперь исследуем вектор .
Рассмотрим вектор в два момента времени – в момент времени t и в момент t 1 . Введем обозначения: . По определению производной:
.
Пусть в момент времени t , точка находится в положении M , а в момент t 1 – в положении M 1 (см. рисунок).
Рассмотрим случай, когда алгебраическая скорость положительна: . То есть направления векторов и совпадают. Тогда точка M 1 находится справа от M . Через точки и проведем плоскости, перпендикулярные векторам и . Пересечение этих плоскостей образует прямую. Она проходит через точку C перпендикулярно плоскости рисунка. MC – это перпендикуляр, опущенный из точки M на эту прямую.
При , точка стремится к точке , а длина отрезка CM стремится к радиусу кривизны траектории ρ . Поскольку и , то угол между отрезками и равен углу между векторами и . Отложим их для наглядности из одного центра.
Абсолютное значение производной:
.
Здесь мы учли, что .
Вектор , как указывалось выше, перпендикулярен . В данном случае он направлен вдоль единичного вектора главной нормали , направленной к центру кривизны C траектории. Поэтому при имеем:
.
Теперь рассмотрим случай, когда алгебраическое значение скорости отрицательно: . В этом случае, вектор скорости противоположен . Получается тот же рисунок, только точка располагается слева от M . В результате абсолютное значение производной остается прежней:
.
Но ее направление меняется на противоположное:
.
Поскольку , то формула сохраняет прежний вид и в этом случае:
.
Нормальное ускорение
Теперь находим нормальное ускорение:
.
Перепишем результат в следующем виде:
,
где ; – единичный вектор в направлении главной нормали траектории – то есть вектор, направленный к мгновенному центру кривизны перпендикулярно касательной к траектории. Поскольку , то также является модулем нормального ускорения. Для него не нужно вводить алгебраическое значение, как мы это делали для скорости и касательного ускорения.
Нормальное ускорение всегда направлено к центру кривизны траектории.
Из формулы (2) имеем:
(4) .
Из формулы (3) находим модуль нормального ускорения:
.
Умножим обе части уравнения (2) скалярно на :
(2) .
.
Поскольку , то . Тогда
;
.
Отсюда видно, что модуль нормального ускорения равен проекции полного ускорения на направление главной нормали.
Выпишем еще раз следующую формулу:
.
Отсюда видно, что нормальное ускорение вызывает изменение направления скорости точки, и оно связано с радиусом кривизны траектории.
Радиус кривизны траектории:
.
И в заключении заметим, что формулу (4) можно переписать в следующем виде:
.
Здесь мы применили формулу для векторного произведения трех векторов:
,
в которую подставили
.
Итак, мы получили:
;
.
Приравняем модули левой и правой частей:
.
Но векторы и взаимно перпендикулярны. Поэтому
.
Тогда
.
Это известная формула из дифференциальной геометрии для кривизны кривой.
Автор: Олег Одинцов . Опубликовано: 09-02-2016 Изменено: 27-01-2020