Remkomplekty.ru

IT Новости из мира ПК
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Связь углового и тангенциального ускорения

Ускорение. Нормальная и тангенциальная составляющие ускорения. Связь нормального ускорения с радиусом кривизны и скоростью.

Скорость частицы может изменяться со временем, как по модулю, так и по направлению. Быстрота изменения вектора скорости, определяется производной вектора по t. Обозначается буквой a и называется — ускорение.

Введём орт касательной к траектории τ, направленный также как и вектор скорости. Следовательно, вектор можно представить в виде суммы двух составляющих. Одна из них коллинеарна с , т. е. направлена по касательной к траектории, и поэтому обозначается at и называется тангенциальным ускорением

Если > 0 (скорость увеличивается), вектор направлен в ту же сторону, что и Если

Всякий бесконечно малый участок траектории FABG в окрестностях точки А можно рассматривать как дугу окружности О радиусом R. Его называют радиусом кривизны траектории в точке А, а центр O такой окружности — центром кривизны.

При и β =π/2+Δα/2 ®π/2. Следовательно, вектор нормален к вектору скорости и направлен к центру O кривизны траектории. Поэтому его называют нормальным (центростремительным) ускорением. Итак, вектор ускорения при движении частицы по плоской кривой определяется следующим выражением:

Вопрос № 3

Вращательное движение. Угловая скорость, период обращения, угловое ускорение. Связь векторов линейной и угловой скорости. Нормальное и тангенциальное ускорение – связь с радиусом, угловой скоростью и угловым ускорением.

При вращательном движении все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения

Поворот тела на некоторый угол φ можно задать в виде отрезка, длина которого равна φ, а направление совпадает с осью, вокруг которой производится поворот. Для того чтобы указать, в какую сторону совершается поворот вокруг данной оси, связывают направления поворота и изображающего его отрезка.

Правило правого винта: направление отрезка должно быть таким, чтобы, глядя вдоль него, мы видели поворот совершающимся по часовой стрелке (вращая головку правого винта по часовой стрелке, мы вызовем его перемещение от себя).

Угловой скоростью тела называется векторная величина, модуль которой определяется формулой . Угловая скорость ω направлена вдоль оси, вокруг которой вращается тело, в сторону, определяемую правилом правого винта. Вращение с постоянной угловой скоростью называется равномерным.

Изменение вектора угловой скорости со временем характеризуется величиной которую называют угловым ускорением.

Если ось вращение неподвижна, то: если w возрастает, то E и w сонаправлены, если w убывает, то E и w направлены в противоположные стороны.

Отдельные точки вращающегося тела имеют различные линейные скорости. Скорость каждой из точек изменяет свое направление. Модуль скорости определяется скоростью вращения тела и расстоянием R рассматриваемой точки от оси вращения.

Пусть за малый промежуток времени тело повернулось

на угол Δφ. Точка, находящаяся на расстоянии R от оси,

проходит при этом путь Δs = RΔφ. Линейная скорость точки

Из рисунка видно, что векторное произведение совпадает по направлению с вектором скорости и имеет модуль, равный ωrsinα=ωR.

Модуль нормального ускорения точек вращающегося тела равен = υ 2 /R = ω 2 R

Предположим, что ось вращения тела не поворачивается в пространстве. Модуль тангенциального ускорения равен |dυ/dt|. Учтем, что расстояние точки тела от оси вращения R = const, тогда

Тангенциальное и нормальное ускорения.

Тангенциальное(касательное) ускорение-это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Направление вектора тангенциального ускорения a лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорениеэто составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела.

Векторперпендикулярен линейной скорости движения, направлен по радиусу кривизны траектории.

Формула скорости при равноускоренном движении

Поступательное и вращательное движение твердого тела.

Поступательное движение— движение, при котором все точки тела движутся по одинаковым траекториям.
Поступательное движение бывает двух типов: равномерное и неравномерное.

Вращательное движение – это движение тела вокруг некоторой оси. При таком движении все точки тела совершают движение по окружностям, центром которых является эта ось.

Угловая скорость. Угловое ускорение.

Угловая скорость — векторная величина, являющаяся псевдовектором (аксиальным вектором) и характеризующая скорость вращения материальной точки вокруг центра вращения. Вектор угловой скорости по величине равен углу поворота точки вокруг центра вращения за единицу времени:

Угловое ускорение — псевдовекторная физическая величина, равная первой производной от псевдовектора угловой скорости по времени

Угловое ускорение характеризует интенсивность изменения модуля и направления угловой скорости при движении твердого тела

Связь линейной скорости с угловой и тангенциального ускорения с угловым.

Отдельные точки вращающегося тела имеют различные линейные скорости . Скорость каждой точки, будучи направлена по касательной к соответствующей окружности, непрерывно изменяет свое направление. Величина скорости определяется скоростью вращения тела и расстоянием R рассматриваемой точки от оси вращения. Пусть за малый промежуток времени тело повернулось на угол (рис.2.4). Точка, находящаяся на расстоянии R от оси проходит при этом путь, равный

Линейная скорость точки по определению.

Тангенциальное ускорение

Воспользовавшись тем же отношением получаем

1.4

Первый закон Ньютона (или закон инерции)

Существуют такие системы отсчета, относительно которых изолированные поступательно движущиеся тела сохраняют свою скорость неизменной по модулю и направлению.

Инерциальной системой отсчёта является такая система отсчёта, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется прямолинейно и равномерно (т.е. с постоянной скоростью).

В при­ро­де су­ще­ству­ют че­ты­ре вида вза­и­мо­дей­ствия

1. Гра­ви­та­ци­он­ное (сила тя­го­те­ния) – это вза­и­мо­дей­ствие между те­ла­ми, ко­то­рые об­ла­да­ют мас­сой.

2. Элек­тро­маг­нит­ное- спра­вед­ли­во для тел, об­ла­да­ю­щих элек­три­че­ским за­ря­дом, от­вет­ствен­но за такие ме­ха­ни­че­ские силы, как сила тре­ния и сила упру­го­сти.

3.Силь­ное- вза­и­мо­дей­ствие ко­рот­ко­дей­ству­ю­щее, то есть дей­ству­ет на рас­сто­я­нии по­ряд­ка раз­ме­ра ядра.

4. Сла­бое. Такое вза­и­мо­дей­ствие от­вет­ствен­но за неко­то­рые виды вза­и­мо­дей­ствия среди эле­мен­тар­ных ча­стиц, за неко­то­рые виды β-рас­па­да и за дру­гие про­цес­сы, про­ис­хо­дя­щие внут­ри атома, атом­но­го ядра.

Масса– является количественной характеристикой инертных свойств тела. Она показывает, как тело реагирует на внешнее воздействие.

Читать еще:  Виды архитектур ос

Сила – является количественной мерой действия одного тела на другое.

Второй закон Ньютона.

Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение: F=ma

Измеряется в

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела(или количеством движения). Импульс тела – векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с).

Выражение второго закона Ньютона через изменение импульса тела

Равномерное движение– это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

Равноускоренное движение — движение, при котором ускорение постоянно по модулю и направлению.

§ 1.28. Угловая скорость и угловое ускорение

Угловая скорость

Проведем координатную ось X через центр окружности (начало координат), вдоль которой движется точка (рис. 1.86). Тогда положение точки А на окружности в любой момент времени однозначно определяется углом φ между осью X и радиусом-вектором , проведенным из центра окружности к движущейся точке. Углы будем выражать в радианах(1).

При движении точки угол φ изменяется. Обозначим изменение угла за время Δt через Δφ. Для нахождения положения точки в любой момент времени надо знать угол φ в начальный момент времени t и определить, на сколько изменился угол за время движения (рис. 1.87):

Пусть точка движется по окружности с постоянной по модулю скоростью. Тогда за любые равные промежутки времени радиус-вектор поворачивается на одинаковые углы. Быстрота обращения точки определяется углом поворота радиуса-вектора за данный интервал времени. Например, если радиус-вектор точки за каждую секунду поворачивается на угол 90° = , а другой точки — на угол 45 = , то мы говорим, что первая точка обращается быстрее второй в два раза.

Если при равномерном обращении за время Δt радиус-вектор повернулся на угол Δφ, то быстрота обращения определится углом поворота в единицу времени. Быстроту обращения характеризуют угловой скоростью.

Угловой скоростью при равномерном движении точки по окружности называется отношение угла Δφ поворота радиуса-вектора к промежутку времени Δt, за который этот поворот произошел.

Обозначим угловую скорость греческой буквой ω (омега). Тогда по определению(2)

В СИ(3) угловая скорость выражается в радианах в секунду (рад/с).

Радиан в секунду равен угловой скорости равномерно обращающейся точки, при которой за время 1 с радиус-вектор этой точки поворачивается на угол 1 рад.

Например, угловая скорость точки земной поверхности равна 0,0000727 рад/с, а точильного диска более 100 рад/с.

Угловую скорость можно выразить через частоту обращения, т. е. число оборотов за 1с. Если точка делает п оборотов в секунду, то время одного оборота равно .

Это время называют периодом обращенияи обозначают буквой Т. Таким образом, частота и период обращения связаны следующим соотношением:

T = . (1.28.3)

Полному обороту точки на окружности соответствует угол Δφ = 2π. Поэтому, согласно формуле (1.28.2),

Частота обращения точек рабочих колес мощных гидротурбин составляет 1—10 с -1 , винта вертолета — 4—6 с -1 , ротора газовой турбины — 200—300 с -1 .

Если при равномерном обращении точки угловая скорость известна, то можно найти изменение угла поворота Δφ за время Δt. Оно равно Δφ = ωΔt. С учетом этого формула (1.28.1) примет вид: φ = φ0 + ωΔt. Приняв начальный момент времени t0 равным нулю, получим, что Δt = t — t0 = t. Тогда угол поворота равен

По этой формуле можно найти положение точки на окружности в любой момент времени.

Угловое ускорение

В случае переменной угловой скорости вводится новая физическая величина, характеризующая быстроту ее изменения, — угловое ускорение:

Угловое ускорение равно производной угловой скорости по времени. Если β = const, то ω(t) = ω + β(t — t), где ω0 — угловая скорость в начальный момент времени t. При t = 0

Эта формула подобна формуле проекции скорости vx = v0x + axt при прямолинейном движении точки. Соответственно угол поворота

Эту формулу можно получить точно таким же способом, как и уравнение координаты при прямолинейном движении х =

Связь между линейной и угловой скоростями

Скорость точки, движущейся по окружности, часто называют линейной скоростью, чтобы подчеркнуть ее отличие от угловой скорости. Между линейной скоростью точки, обращающейся по окружности, и ее угловой скоростью существует связь. При равномерном движении точки по любой траектории модуль скорости равен отношению пути s ко времени Δt, за которое этот путь пройден. Точка А, движущаяся по окружноcти радиусом R, за время Δt проходит путь, равный длине дуги (рис. 1.88): s = = ΔφR. Модуль линейной скорости движения

Итак, модуль линейной скорости точки, движущейся по окружности, равен произведению угловой скорости на радиус окружности:

Эта формула справедлива как для равномерного, так и для неравномерного движения точки по окружности.

Из выражения (1.28.9) видно, что чем больше радиус окружности, тем больше линейная скорость точки. Для точек земного экватора v = 463 м/с, а на широте Санкт-Петербурга — 233 м/с. На полюсах Земли v = 0.

Модуль ускорения точки, движущейся равномерно по окружности (центростремительное, или нормальное, ускорение) можно выразить через угловую скорость тела и радиус окружности. Так как а = = и v = ωR, то

Чем больше радиус окружности, тем большее по модулю ускорение имеет точка при заданной угловой скорости. Ускорение любой точки поверхности Земли на экваторе составляет 3,4 см/с 2 .

Связь линейного ускорения с угловым

С изменением угловой скорости точки меняется и ее линейная скорость. Нормальное ускорение связано согласно формуле (1.28.10) с угловой скоростью и не зависит, следовательно, от углового ускорения. Но тангенциальное ускорение, определяемое формулой (1.27.4), выражается через угловое ускорение:

Мы научились полностью описывать движение точки по окружности. При фиксированном радиусе окружности модуль скорости (линейная скорость) пропорционален угловой скорости, а нормальное ускорение пропорционально ее квадрату. Тангенциальное ускорение пропорционально угловому ускорению.

Упражнение 5

  1. Поезд движется по закруглению радиусом 200 м со скоростью 36 км/ч. Найдите модуль нормального ускорения.
  2. Тело брошено с поверхности Земли под углом 60° к горизонту. Модуль начальной скорости равен 20 м/с. Чему равен радиус кривизны траектории в точке максимального подъема?
  3. Определите радиус кривизны траектории снаряда в момент вылета из орудия, если модуль скорости снаряда равен 1 км/с, а скорость составляет угол 60° с горизонтом.
  4. Снаряд вылетает из орудия под углом 45° к горизонту. Чему равна дальность полета снаряда, если радиус кривизны траектории в точке максимального подъема равен 15 км?
  5. Сферический резервуар, стоящий на земле, имеет радиус R. При какой наименьшей скорости камень, брошенный с поверхности Земли, может перелететь через резервуар, коснувшись его вершины? Под каким углом к горизонту должен быть при этом брошен камень?
  6. Въезд на один из самых высоких в Японии мостов имеет форму винтовой линии, обвивающей цилиндр радиусом r. Полотно дороги составляет угол α с горизонтальной плоскостью. Найдите модуль ускорения автомобиля, движущегося по въезду с постоянной по модулю скоростью v.
  7. Точка начинает двигаться равноускоренно по окружности радиусом 1 м и за 10 с проходит путь 50 м. Чему равно нормальное ускорение точки через 5 с после начала движения?
  1. Поезд въезжает на закругленный участок пути с начальной скоростью 54 км/ч и проходит путь 600 м за 30 с. Радиус закругления равен 1 км. Определите модуль скорости и полное ускорение поезда в конце этого пути, считая тангенциальное ускорение постоянным по модулю.
  2. Груз Р начинает опускаться с постоянным ускорением а = 2 м/с 2 и приводит в движение ступенчатый шкив радиусами г = 0,25 м и R = 0,50 м (рис. 1.89). Какое ускорение а1, будет иметь точка М через t = 0,50 с после начала движения?
Читать еще:  Ускорение процессора amd

Рис. 1.89

  • Маховик приобрел начальную угловую скорость ω = 2π рад/с. Сделав 10 оборотов, он вследствие трения в подшипниках остановился. Найдите угловое ускорение маховика, считая его постоянным.
  • Маховое колесо радиусом R = 1 м начинает движение из состояния покоя равноускоренно. Через t1 = 10 с точка, лежащая на его ободе, приобретает скорость v1 = 100 м/с. Найдите скорость, а также нормальное, касательное и полное ускорения этой точки в момент времени t2 = 15 с.
  • Шкив радиусом R = 20 см начинает вращаться с угловым ускорением β = 3 рад/с2. Через какое время точка, лежащая на его ободе, будет иметь ускорение а = 75 см/с2?
  • Точка начинает обращаться по окружности с постоянным ускорением β = 0,04 рад/с2. Через какое время вектор ее ускорения будет составлять с вектором скорости угол а = 45°?
  • (1) Напомним, что радиан равен центральному углу, опирающемуся на дугу, длина которой равна радиусу окружности. 1 рад приблизительно равен 57°17’48». В радианной мере угол равен отношению длины дуги окружности к ее радиусу: .

    (2) Когда точка движется неравномерно, то мгновенная угловая скорость определяется как предел отношения Δφ к Δt при условии, что Δt —> 0:

    (3) СИ — Международная система единиц. В этой системе за единицу длины принят 1 м, за единицу времени — 1с. Подробнее о СИ будет рассказано в дальнейшем.

    Угловое ускорение

    Система понятий кинематики включает в себя также такую величину как угловое ускорение тела. Дадим ей определение, рассмотрим основные аспекты с использованием примеров.

    Основные понятия

    Угловое ускорение – величина, характеризующая изменение скорости с течением времени.

    Пусть рассматриваемый промежуток времени это: Δ t = t 1 — t , а изменение угловой скорости составит Δ ω = ω 1 — ω , тогда числовое значение среднего углового ускорения за тот же интервал времени: » open=» ε = ∆ ω ∆ t = ε . Перейдем к пределу, когда Δ t > 0 , тогда формула углового ускорения будет иметь вид: ε = l i m ∆ t → 0 ∆ ω ∆ t = d ω d t = d 2 φ d t = ω ˙ = φ ¨ .

    Числовое значение ускорения в заданный момент времени есть первая производная от угловой скорости или вторая производная от угла поворота по времени.

    Размерность углового ускорения 1 T 2 (т.е. 1 в р е м я 2 ). Укажем также, в чем измеряется угловое ускорение: за единицу измерения стандартно принимается р а д / с 2 или иначе: 1 с 2 ( с — 2 ) .

    Ускоренное вращение тела – это вращение, при котором угловая скорость (ее модуль) возрастает с течением времени.

    Замедленное вращение тела – это вращение, при котором угловая скорость (ее модуль) убывает с течением времени.

    В общем, довольно просто заметить, что, если ω и ε имеют одинаковые знаки, наблюдается ускоренное вращение, а, когда противоположные знаки – замедленное.

    Рисунок 1 . Вектор углового ускорения

    Если мы представим угловое ускорение как вектор ε → = d ω → d t , имеющий направление вдоль оси вращения, то в случае ускоренного вращения ε → и ω → совпадут по направлениям (левая часть
    рисунка 1 ) и будут противоположны по направлениям в случае замедленного вращения (правая часть
    рисунка 1 ).

    Закон равнопеременного вращения

    Равнопеременное вращение – вращение, при котором угловое ускорение во все время движения является постоянным ( ε = c o n s t ) .

    Выведем формульно закон равнопеременного вращения. Пусть в начальный момент времени t 0 угол вращения равен ϕ = ϕ 0 ; угловая скорость — ω = ω 0 (т.е. ω 0 является начальной угловой скоростью).

    Выражение ε = d ω d t = ω ˙ = φ ¨ дает нам возможность сделать запись: d ω = ε d t . Проинтегрируем левую часть крайней записи в пределах от ω 0 до ω , а правую – в пределах от 0 до t , тогда:

    ω = ω 0 + ε t , d φ = ω 0 d t + ε t d t .

    Проинтегрируем вторично и получим формулу, выражающую закон равнопеременного вращения:

    Закон равнопеременного вращения: φ = φ 0 + ω t + ε t 2 2 .

    Вращение является равноускоренным, когда ω и ε имеют одинаковые знаки.

    Вращение является равнозамедленным, когда ω и ε противоположны по знаку.

    Угловое ускорение имеет связь с полным и тангенциальным ускорениями. Пусть некоторая точка вращается неравномерно по окружности с радиусом R , тогда: α r = ε R . Нормальное ускорение имеет также связь с угловым: a n = ω 2 R . Учтем это выражение и для полного ускорения получим: a = a r 2 + a n 2 = R ε 2 + ω 4 Для равнопеременного движения: ω = ε t ; a n = ω 2 R = ε 2 t 2 R и a = R ε 2 + ε 4 t 4 = R ε 1 + ε 2 t 4 .

    Читать еще:  Архитектура современного процессора

    Практические примеры

    На рисунке 2 заданы различные типы вращения гироскопа (волчка). С учетом соответствующих подписей необходимо указать, какой рисунок верно демонстрирует направление углового ускорения.

    Правило буравчика (правого винта) связывает направление вращения и псевдовектор угловой скорости. Рисунки 2 . 1 . и 2 . 3 . показывают направление псевдовектора вверх, а рисунки 2 . 2 . и 2 . 4 . – вниз.

    Когда угловая скорость возрастает, ее приращение и вектор ускорения совпадут с вектором угловой скорости (рисунки 2 . 1 . и 2 . 4 . ). Когда угловая скорость будет уменьшаться, ее приращение и вектор ускорения окажутся противоположно направлены вектору угловой скорости (рисунки 2 . 2 . и 2 . 3 . ). Таким образом, все рисунки демонстрируют верное направление углового ускорения.

    Пусть задана некоторая материальная точка, совершающая движение по окружности с радиусом R . При этом выражение ϕ = α t 3 отражает зависимость угла поворота от времени. Необходимо найти полное ускорение заданной точки как функцию времени.

    Запишем выражения для угловой скорости и углового ускорения заданной точки:

    ω = d φ d t = 3 α t 2 ; ε = 6 α t .

    Полное ускорение запишем как:

    a = a r 2 + a n 2 = R ε 2 + ω 4 = R 36 a 2 t 2 + 81 a 4 t 8 = 3 a t R 4 + 9 a 2 t 6 .

    Вращательное движение и угловая скорость твердого тела

    В этой статье речь пойдет о физических величинах, которые характеризуют вращательное движение тела: угловая скорость, угловое перемещение, угловое ускорение, момент сил.

    Твердым телом называют совокупность жестко связанных материальных точек. Когда твердое тело производит вращение относительно какой-либо оси, отдельные материальные точки, из которых оно складывается, двигаются по окружностям разных радиусов.

    За определенный промежуток времени, например, за которое тело совершит один оборот, отдельные материальные точки, из которых состоит твердое тело, пройдут разные пути, следовательно, отдельные точки будут иметь разные линейные скорости. Описывать вращение твердого тела с помощью линейных скоростей отдельных материальных точек — сложно.

    Угловое перемещение

    Однако, анализируя движение отдельных материальных точек, можно установить, что за одинаковый промежуток времени все они поворачиваются вокруг оси на одинаковый угол. То есть для описания вращения твердого тела удобно пользоваться такой физической величиной, как угловое перемещение:

    Угловая скорость и угловое ускорение

    Вращательное движение можно охарактеризовать угловой скоростью: ω = ∆φ/∆t.

    Угловая скорость характеризует скорость вращения тела и равняется отношению изменения угла поворота ко времени, за которое оно произошло. Измеряется в радианах за секунду: [ω] = рад/с.

    Угловая скорость вращения связана с линейной скоростью следующим соотношением: v = Rω, где R – радиус окружности, по которой двигается тело.

    Вращательное движение тела характеризуется еще одной физической величиной — угловым ускорением, которое равно отношению изменения угловой скорости ко времени, за которое оно произошло: ε = ∆ω/∆t. Единица измерения углового ускорения: [ε] = рад/с 2 .

    Угловая скорость и угловое ускорение являются псевдовекторами, направление которых зависит от направления вращения. Его можно определить по правилу правого винта.

    Равномерное вращательное движение

    Равномерное вращательное движение осуществляется с постоянной угловой скоростью и описывается такими уравнениями: ε = 0, ω = const, φ = φ + ωt, где φ – начальное значение угла поворота.

    Равноускоренное вращательное движение

    Равноускоренное вращательное движение происходит с постоянным угловым ускорением и описывается такими уравнениями: ε = const, ω = ω+ εt, φ = φ + ωt + εt 2 /2.

    Во время вращения твердого тела центростремительное ускорение каждой точки этого тела можно найти так: ɑц = v 2 /R = (ωR) 2 /R = ω 2 R.

    Когда вращение твердого тела ускоренное, можно найти тангенциальное ускорение его точек по формуле: ɑt = ∆v/∆t= ∆(ωR)/∆t= R(∆ω/∆t) = Rε.

    Момент сил

    Если, рассматривая физическую проблему, мы имеем дело не с материальной точкой, а с твердым телом, то действие нескольких сил на него, приложенных к различным точкам этого тела, нельзя свести к действию одной силы. В этом случае рассматривают момент сил.

    Моментом силы называют произведение силы на плечо. Это векторная величина, и ее находят по формуле: M = RFsinα, где α — угол между векторами R и F. Если на тело действует несколько моментов сил, то их действие можно заменить их равнодействующей, векторной суммой этих моментов: M = M1 + M2 + …+ Mn.

    Эксперименты и опыт показывают, что под действием момента силы угловая скорость тела меняется, то есть тело имеет угловое ускорение. Выясним, как зависит угловое ускорение материальной точки (совокупности материальных точек) от приложенного момента сил: F = mɑ, RF = Rma = R 2 mβ, β= M/mR 2 = M/I, где I = mR 2 — момент инерции материальной точки. Заметим, что момент инерции тела имеет зависимость как от массы тела, так и от расположения этой массы относительно оси вращения.

    Примеры решения задач

    Задача 1. Ротор центрифуги делает 2•10 4 об/мин. После того как выключили двигатель, его вращение прекращается через 8 мин. Найдите угловое ускорение, а также число оборотов, которое совершает ротор с момента выключения двигателя до его полной остановки, считая, что движение ротора равноускоренное.

    Найдем угловое ускорение, учитывая, что угловая скорость при равноускоренном движении описывается уравнением: ω(t) = ω — εt.

    Отсюда, учитывая, что в конце движения скорость равна нулю, найдем: ε = ω/t = 2πn/t.

    Переведя данные задачи в систему единиц СИ (n = 333 об/с; t = 480 с), получим: ε = 2π333/480 = 4,36(рад/с 2 ).

    Угол поворота ротора центрифуги за время t будет: φ(t)= φ + ωt + εt 2 /2. Учитывая выражение для углового ускорения и то, что φ = 0, находим: φ(t)= ωt/2 = πnt.

    Количество оборотов ротора за это время будет: N = φ(t)/2π = πnt/2π = nt = 8•10 4 (об.).

    Ответ: угловое ускорение равно 4,36 рад/с 2 ; количество оборотов, сделанное ротором с момента выключения двигателя до его полной остановки, равно 8•10 4 об.

    Задача 2. Диск, имеющий массу 1 кг и радиус 20 см, вращается с частотой 120 об. в минуту. Под действием тормозного устройства на край диска начала действовать сила трения 10 Н. Найдите время остановки диска, после того как на него стала действовать сила трения.

    Найдем тормозной момент сил, действующий на диск: M = RF.

    Найдем угловое ускорение диска: ε = M/I = FR/mR 2 = F/mR.

    Найдем время, за которое диск остановится: t = ω, где ω — начальная угловая скорость диска, которая равна 2πv.

    Сделаем вычисления: t = 2πv/ ε = 2πvmR/F = 6,28•2•1•0,2/10 = 2,5 (с).

    Ответ: время остановки равно 2,5 с.

    Ссылка на основную публикацию
    Adblock
    detector