Remkomplekty.ru

IT Новости из мира ПК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Архитектура пк это внутренняя организация

Архитектура компьютера

Основной принцип построения ЭВМ носит название архитектуры фон Неймана — американского ученого венгерского происхождения Джона фон Неймана, который ее предложил.

Современную архитектуру компьютера определяют следующие принципы:

Принцип программного управления. Обеспечивает автоматизацию процесса вычислений на ЭВМ. Согласно этому принципу, для решения каждой задачи составляется программа, которая определяет последовательность действий компьютера. Эффективность программного управления будет выше при решении задачи этой же программой много раз (хотя и с разными начальными данными).

Принцип программы, сохраняемой в памяти. Согласно этому принципу, команды программы подаются, как и данные, в виде чисел и обрабатываются так же, как и числа, а сама программа перед выполнением загружается в оперативную память, что ускоряет процесс ее выполнения.

Принцип произвольного доступа к памяти. В соответствии с этим принципом, элементы программ и данных могут записываться в произвольное место оперативной памяти, что позволяет обратиться по любому заданному адресу (к конкретному участку памяти) без просмотра предыдущих.

На основании этих принципов можно утверждать, что современный компьютер — техническое устройство, которое после ввода в память начальных данных в виде цифровых кодов и программы их обработки, выраженной тоже цифровыми кодами, способно автоматически осуществить вычислительный процесс, заданный программой, и выдать готовые результаты решения задачи в форме, пригодной для восприятия человеком.

Персональный компьютер типа IBM PC имеет довольно традиционную архитектуру микропроцессорной системы и содержит все обычные функциональные узлы: процессор, постоянную и оперативную память, устройства ввода/вывода, системную шину, источник питания.

Архитектура персонального компьютера типа
IBM PC.

Основные особенности архитектуры персональных компьютеров сводятся к принципам компоновки аппаратуры, а также к выбранному набору системных аппаратных средств.

Основные узлы компьютера следующие:

Центральный процессор — это микропроцессор со всеми необходимыми вспомогательными микросхемами, включая внешнюю кэш-память и контроллер системной шины. (О кэш-памяти подробнее будет рассказано в следующих разделах). В большинстве случаев именно центральный процессор осуществляет обмен по системной шине.

Оперативная память может занимать почти все адресуемое пространство памяти процессора. Однако чаще всего ее объем гораздо меньше. В современных персональных компьютерах стандартный объем системной памяти составляет, как правило, от 64 до 512 Мбайт. Оперативная память компьютера выполняется на микросхемах динамической памяти и поэтому требует регенерации.

Постоянная память (ROM BIOS — Base Input/Output System) имеет небольшой объем (до 64 Кбайт), содержит программу начального запуска, описание конфигурации системы, а также драйверы (программы нижнего уровня) для взаимодействия с системными устройствами.

Контроллер прерываний преобразует аппаратные прерывания системной магистрали в аппаратные прерывания процессора и задает адреса векторов прерывания. Все режимы функционирования контроллера прерываний задаются программно процессором перед началом работы.

Контроллер прямого доступа к памяти принимает запрос на ПДП из системной магистрали, передает его процессору, а после предоставления процессором магистрали производит пересылку данных между памятью и устройством ввода/вывода. Все режимы функционирования контроллера ПДП задаются программно процессором перед началом работы. Использование встроенных в компьютер контроллеров прерываний и ПДП позволяет существенно упростить аппаратуру применяемых плат расширения.

Контроллер регенерации осуществляет периодическое обновление информации в динамической оперативной памяти путем проведения по шине специальных циклов регенерации. На время циклов регенерации он становится хозяином (задатчиком) шины.

Перестановщик байтов данных помогает производить обмен данными между 16-разрядным и 8-разрядным устройствами, пересылать целые слова или отдельные байты.

Часы реального времени и таймер-счетчик — это устройства для внутреннего контроля времени и даты, а также для программной выдержки временных интервалов, программного задания частоты и т.д.

Системные устройства ввода/вывода — это те устройства, которые необходимы для работы компьютера и взаимодействия со стандартными внешними устройствами по параллельному и последовательному интерфейсам. Они могут быть выполнены на материнской плате, а могут располагаться на платах расширения.

Платы расширения устанавливаются в слоты (разъемы) системной магистрали и могут содержать оперативную память и устройства ввода/вывода. Они могут обмениваться данными с другими устройствами на шине в режиме программного обмена, в режиме прерываний и в режиме ПДП. Предусмотрена также возможность захвата шины, то есть полного отключения от шины всех системных устройств на некоторое время.

Важная особенность подобной архитектуры — ее открытость, то есть возможность включения в компьютер дополнительных устройств, причем как системных устройств, так и разнообразных плат расширения. Открытость предполагает также возможность простого встраивания программ пользователя на любом уровне программного обеспечения компьютера.

Первый компьютер семейства, получивший широкое распространение, IBM PC XT, был выполнен на базе оригинальной системной магистрали PC XT-Bus. В дальнейшем (начиная с IBM PC AT) она была доработана до магистрали, ставшей стандартной и получившей название ISA (Industry Standard Architecture). До недавнего времени ISA оставалась основой компьютера.

Однако, начиная с появления процессоров i486 (в 1989 году), она перестала удовлетворять требованиям производительности, и ее стали дублировать более быстрыми шинами: VLB (VESA Local Bus) и PCI (Peripheral Component Interconnect bus) или заменять совместимой с ISA магистралью EISA (Enhanced ISA). Постепенно шина PCI вытеснила конкурентов и стала фактическим стандартом, а начиная с 1999 года в новых компьютерах рекомендуется полностью отказываться от магистрали ISA, оставляя только PCI. Правда, при этом приходится отказываться от применения плат расширения, разработанных за долгие годы для подключения к магистрали ISA.

Другое направление совершенствования архитектуры персонального компьютера связано с максимальным ускорением обмена информацией с системной памятью. Именно из системной памяти компьютер читает все исполняемые команды, и в системной же памяти он хранит данные. То есть больше всего обращений процессор совершает именно к памяти. Ускорение обмена с памятью приводит к существенному ускорению работы всей системы в целом.

Но при использовании для обмена с памятью системной магистрали приходится учитывать скоростные ограничения магистрали. Системная магистраль должна обеспечивать сопряжение с большим числом устройств, поэтому она должна иметь довольно большую протяженность; она требует применения входных и выходных буферов для согласования с линиями магистрали. Циклы обмена по системной магистрали сложны, и ускорять их нельзя. В результате существенного ускорения обмена процессора с памятью по магистрали добиться невозможно.

Разработчиками был предложен следующий подход. Системная память подключается не к системной магистрали, а к специальной высокоскоростной шине, находящейся «ближе» к процессору, не требующей сложных буферов и больших расстояний. В таком случае обмен с памятью идет с максимально возможной для данного процессора скоростью, и системная магистраль не замедляет его. Особенно актуальным это становится с ростом быстродействия процессора (сейчас тактовые частоты процессоров персональных компьютеров достигают 1 — 3 ГГц).

Таким образом, структура персонального компьютера из одношинной, применявшейся только в первых компьютерах, становится трехшинной.

Архитектура компьютера

Основной принцип построения ЭВМ носит название архитектуры фон Неймана — американского ученого венгерского происхождения Джона фон Неймана, который ее предложил.

Современную архитектуру компьютера определяют следующие принципы:

Принцип программного управления. Обеспечивает автоматизацию процесса вычислений на ЭВМ. Согласно этому принципу, для решения каждой задачи составляется программа, которая определяет последовательность действий компьютера. Эффективность программного управления будет выше при решении задачи этой же программой много раз (хотя и с разными начальными данными).

Принцип программы, сохраняемой в памяти. Согласно этому принципу, команды программы подаются, как и данные, в виде чисел и обрабатываются так же, как и числа, а сама программа перед выполнением загружается в оперативную память, что ускоряет процесс ее выполнения.

Принцип произвольного доступа к памяти. В соответствии с этим принципом, элементы программ и данных могут записываться в произвольное место оперативной памяти, что позволяет обратиться по любому заданному адресу (к конкретному участку памяти) без просмотра предыдущих.

На основании этих принципов можно утверждать, что современный компьютер — техническое устройство, которое после ввода в память начальных данных в виде цифровых кодов и программы их обработки, выраженной тоже цифровыми кодами, способно автоматически осуществить вычислительный процесс, заданный программой, и выдать готовые результаты решения задачи в форме, пригодной для восприятия человеком.

Персональный компьютер типа IBM PC имеет довольно традиционную архитектуру микропроцессорной системы и содержит все обычные функциональные узлы: процессор, постоянную и оперативную память, устройства ввода/вывода, системную шину, источник питания.

Архитектура персонального компьютера типа
IBM PC.

Основные особенности архитектуры персональных компьютеров сводятся к принципам компоновки аппаратуры, а также к выбранному набору системных аппаратных средств.

Читать еще:  Применение бетона и железобетона

Основные узлы компьютера следующие:

Центральный процессор — это микропроцессор со всеми необходимыми вспомогательными микросхемами, включая внешнюю кэш-память и контроллер системной шины. (О кэш-памяти подробнее будет рассказано в следующих разделах). В большинстве случаев именно центральный процессор осуществляет обмен по системной шине.

Оперативная память может занимать почти все адресуемое пространство памяти процессора. Однако чаще всего ее объем гораздо меньше. В современных персональных компьютерах стандартный объем системной памяти составляет, как правило, от 64 до 512 Мбайт. Оперативная память компьютера выполняется на микросхемах динамической памяти и поэтому требует регенерации.

Постоянная память (ROM BIOS — Base Input/Output System) имеет небольшой объем (до 64 Кбайт), содержит программу начального запуска, описание конфигурации системы, а также драйверы (программы нижнего уровня) для взаимодействия с системными устройствами.

Контроллер прерываний преобразует аппаратные прерывания системной магистрали в аппаратные прерывания процессора и задает адреса векторов прерывания. Все режимы функционирования контроллера прерываний задаются программно процессором перед началом работы.

Контроллер прямого доступа к памяти принимает запрос на ПДП из системной магистрали, передает его процессору, а после предоставления процессором магистрали производит пересылку данных между памятью и устройством ввода/вывода. Все режимы функционирования контроллера ПДП задаются программно процессором перед началом работы. Использование встроенных в компьютер контроллеров прерываний и ПДП позволяет существенно упростить аппаратуру применяемых плат расширения.

Контроллер регенерации осуществляет периодическое обновление информации в динамической оперативной памяти путем проведения по шине специальных циклов регенерации. На время циклов регенерации он становится хозяином (задатчиком) шины.

Перестановщик байтов данных помогает производить обмен данными между 16-разрядным и 8-разрядным устройствами, пересылать целые слова или отдельные байты.

Часы реального времени и таймер-счетчик — это устройства для внутреннего контроля времени и даты, а также для программной выдержки временных интервалов, программного задания частоты и т.д.

Системные устройства ввода/вывода — это те устройства, которые необходимы для работы компьютера и взаимодействия со стандартными внешними устройствами по параллельному и последовательному интерфейсам. Они могут быть выполнены на материнской плате, а могут располагаться на платах расширения.

Платы расширения устанавливаются в слоты (разъемы) системной магистрали и могут содержать оперативную память и устройства ввода/вывода. Они могут обмениваться данными с другими устройствами на шине в режиме программного обмена, в режиме прерываний и в режиме ПДП. Предусмотрена также возможность захвата шины, то есть полного отключения от шины всех системных устройств на некоторое время.

Важная особенность подобной архитектуры — ее открытость, то есть возможность включения в компьютер дополнительных устройств, причем как системных устройств, так и разнообразных плат расширения. Открытость предполагает также возможность простого встраивания программ пользователя на любом уровне программного обеспечения компьютера.

Первый компьютер семейства, получивший широкое распространение, IBM PC XT, был выполнен на базе оригинальной системной магистрали PC XT-Bus. В дальнейшем (начиная с IBM PC AT) она была доработана до магистрали, ставшей стандартной и получившей название ISA (Industry Standard Architecture). До недавнего времени ISA оставалась основой компьютера.

Однако, начиная с появления процессоров i486 (в 1989 году), она перестала удовлетворять требованиям производительности, и ее стали дублировать более быстрыми шинами: VLB (VESA Local Bus) и PCI (Peripheral Component Interconnect bus) или заменять совместимой с ISA магистралью EISA (Enhanced ISA). Постепенно шина PCI вытеснила конкурентов и стала фактическим стандартом, а начиная с 1999 года в новых компьютерах рекомендуется полностью отказываться от магистрали ISA, оставляя только PCI. Правда, при этом приходится отказываться от применения плат расширения, разработанных за долгие годы для подключения к магистрали ISA.

Другое направление совершенствования архитектуры персонального компьютера связано с максимальным ускорением обмена информацией с системной памятью. Именно из системной памяти компьютер читает все исполняемые команды, и в системной же памяти он хранит данные. То есть больше всего обращений процессор совершает именно к памяти. Ускорение обмена с памятью приводит к существенному ускорению работы всей системы в целом.

Но при использовании для обмена с памятью системной магистрали приходится учитывать скоростные ограничения магистрали. Системная магистраль должна обеспечивать сопряжение с большим числом устройств, поэтому она должна иметь довольно большую протяженность; она требует применения входных и выходных буферов для согласования с линиями магистрали. Циклы обмена по системной магистрали сложны, и ускорять их нельзя. В результате существенного ускорения обмена процессора с памятью по магистрали добиться невозможно.

Разработчиками был предложен следующий подход. Системная память подключается не к системной магистрали, а к специальной высокоскоростной шине, находящейся «ближе» к процессору, не требующей сложных буферов и больших расстояний. В таком случае обмен с памятью идет с максимально возможной для данного процессора скоростью, и системная магистраль не замедляет его. Особенно актуальным это становится с ростом быстродействия процессора (сейчас тактовые частоты процессоров персональных компьютеров достигают 1 — 3 ГГц).

Таким образом, структура персонального компьютера из одношинной, применявшейся только в первых компьютерах, становится трехшинной.

Открытая архитектура ПК (внутренняя структура компьютера)

Операционная система

Операцио́нная систе́ма, сокр. ОС (англ. operating system, OS) — комплекс управляющих и обрабатывающих программ, которые, с одной стороны, выступают как интерфейс между устройствами вычислительной системы и прикладными программами, а с другой стороны — предназначены для управления устройствами, управления вычислительными процессами, эффективного распределения вычислительных ресурсов между вычислительными процессами и организации надёжных вычислений. Это определение применимо к большинству современных ОС общего назначения.

Функции операционных систем:

§ Выполнение по запросу программ (ввод и вывод данных, запуск и остановка других программ, выделение и освобождение дополнительной памяти и др.).

§ Загрузка программ в оперативную память и их выполнение.

§ Стандартизованный доступ к периферийным устройствам (устройства ввода-вывода).

§ Управление оперативной памятью (распределение между процессами, организация виртуальной памяти).

§ Управление доступом к данным на энергонезависимых носителях (таких как жёсткий диск, оптические диски и др.), организованным в той или иной файловой системе.

§ Обеспечение пользовательского интерфейса.

§ Сохранение информации об ошибках системы.

§ Параллельное или псевдопараллельное выполнение задач (многозадачность).

§ Эффективное распределение ресурсов вычислительной системы между процессами.

§ Разграничение доступа различных процессов к ресурсам.

§ Организация надёжных вычислений (невозможности одного вычислительного процесса намеренно или по ошибке повлиять на вычисления в другом процессе), основана на разграничении доступа к ресурсам.

§ Взаимодействие между процессами: обмен данными, взаимная синхронизация.

§ Защита самой системы, а также пользовательских данных и программ от действий пользователей (злонамеренных или по незнанию) или приложений.

§ Многопользовательский режим работы и разграничение прав доступа (см. аутентификация, авторизация).

Открытая архитектура ПК (внутренняя структура компьютера)

Открытая архитектура — архитектура компьютера, периферийного устройства или же программного обеспечения, на которую опубликованы спецификации, что позволяет другим производителям разрабатывать дополнительные устройства к системам с такой архитектурой.

Разобьем части компьютера на четыре основные группы:

1. Системный блок;
2. Периферийные устройства.
3. Средства манипулирования;
4. Средства отображения;

Устройство системного блока:

Материнская плата – основная часть системного блока, к которой подключены все устройства системного блока. Через материнскую плату происходит общение устройств системного блока между собой, обмен информацией, питание электроэнергией. Чем быстрей шины(каналы связи устройств) материнской платы, тем быстрей происходит общение устройств между собой, тем быстрее работает компьютер.

Процессор – мозг системного блока, выполняет логические операции. От его скорости, частоты во многом зависит быстродействие компьютера и вся его архитектура.

Оперативная память – память для временного хранения данных в компьютере, используется только, когда компьютер работает. От объема и скорости оперативной памяти зависит быстродействие компьютера.

Жесткий диск – служит для длительного хранение информации, на нем расположены программы необходимые для работы компьютера (Windows, Office, Internet Explorer.) и файлы пользователя (Почтовые файлы, если используется почтовый клиент, видео, музыка, картинки.).

Видеокарта – плата внутри системного блока, предназначенная для связи системного блока и монитора, передает изображение на монитор и берет часть вычислений на себя по подготовке изображения для монитора. От видеокарты зависит качество изображения. Видеокарта имеет свою встроенную оперативную память и свой процессор по обработке изображения. Чем выше частота работы процессора видеокарты и чем больше память видеокарты, тем в более крутые (позже выпушенные) игры вы сможете играть на своем компьютере.

Читать еще:  Приложения для ускорения пк

Звуковая карта – предназначена для подготовки звуковых сигналов, воспроизводимых колонками. Звуковая карта обычно встроена в материнскую плату, но бывает и конструктивно отделена и подключена через шину.

Сетевая карта – плата, устройство, устанавливается в материнскую плату или встроено в нее. Сетевая карта служит для соединения компьютера с другими компьютерами по локальной сети или для подключения к сети Интернет.

Кулеры – вентиляторы, предназначенные для воздушного охлаждения. Обычно кулеры установлены внутри блока питания, на процессоре, на видеокарте. Дополнительный кулер может быть установлен на системном блоке, для охлаждения всего блока. Радиаторы – металлические пластины, устанавливаются для отвода тепла с процессоров в системном блоке. Обычно радиаторы охлаждаются кулерами, но не всегда.

(внешняя структура компьютера)

Принтер (от англ. print — печать) — периферийное устройство компьютера, предназначенное для перевода текста или графики на физический носитель из электронного вида.

По принципу переноса изображения на носитель принтеры делятся на:

По количеству цветов печати на:

По соединению с источником данных :

по проводным каналам:

  • через SCSI кабель
  • через последовательный порт
  • через параллельный порт
  • по шине Universal Serial Bus
  • через локальную сеть (LAN, NET)
  • помощью двух портов, при этом один из портов управляет приводом ЧПУ, через другой порт идут данные на печатающие головки

посредством беспроводного соединения:

  • через ИК-порт (IRDA)
  • по Bluetooth
  • по Wi-Fi

Манипуля́тор «мышь» — механический манипулятор, преобразующий механические движения в движение курсора на экране.

Принцип действия:

Мышь воспринимает своё перемещение в рабочей плоскости (обычно — на участке поверхности стола) и передаёт эту информацию компьютеру. Программа, работающая на компьютере, в ответ на перемещение мыши производит на экране действие, отвечающее направлению и расстоянию этого перемещения. В универсальных интерфейсах (например, в оконных) с помощью мыши пользователь управляет специальным курсором — указателем — манипулятором элементами интерфейса. Иногда используется ввод команд мышью без участия видимых элементов интерфейса программы: при помощи анализа движений мыши. Такой способ получил название «жесты мышью» (англ. mouse gestures).

В дополнение к детектору перемещения, мышь имеет от одной до трёх и более кнопок, а также дополнительные элементы управления (колёса прокрутки, потенциометры, джойстики, трекболы, клавиши и т. п.), действие которых обычно связывается с текущим положением курсора (или составляющих специфического интерфейса).

Компьютерная клавиатура — одно из основных устройств ввода информации от пользователя в компьютер.

Двенадцать функциональных клавиш расположены в самом верхнем ряду клавиатуры. Ниже располагается блок алфавитно-цифровых клавиш. Правее этого блока находятся клавиши управления курсором, а с самого правого края клавиатуры — цифровая панель.

По своему назначению клавиши на клавиатуре делятся на шесть групп:

  • функциональные;
  • алфавитно-цифровые;
  • управления курсором;
  • цифровая панель;
  • специализированные;
  • модификаторы.

3. Файловый менеджер ”проводник”

Файловый менеджер (англ. file manager) — компьютерная программа, предоставляющая интерфейс пользователя для работы с файловой системой и файлами. Файловый менеджер позволяет выполнять наиболее частые операции над файлами — создание, открытие/проигрывание/просмотр, редактирование, перемещение, переименование, копирование, удаление, изменение атрибутов и свойств, поиск файлов и назначение прав. Помимо основных функций, многие файловые менеджеры включают ряд дополнительных возможностей, например, таких как работа с сетью (через FTP, NFS и т. п.), резервное копирование, управление принтерами и пр.

Выделяют различные типы файловых менеджеров, например:

§ Навигационные и пространственные — иногда поддерживается переключение между этими режимами.

§ Двупанельные — в общем случае имеют две равноценных панели для списка файлов

a) правая кнопка мыши/создать

b) меню «Пуск»/создать

a) правая кнопка мыши/вырезать /вставить

a) правая кнопка мыши/копировать /вставить

b) с помощью горячих клавиш Ctrl+C – копировать, Ctrl+V – вставить

a) правая кнопка мыши/удалить

b) перетащить в корзину

c) меню «Пуск»/панель управления/установка и удаление программ/удаление

a) правая кнопка мыши/открыть

b) навести мышью на значок и дважды нажать на него левой кнопкой мыши

c) навести мышью на значок выделить левой кнопкой мыши и нажать Enter

Буфер обмена

Бу́фер обме́на (англ. clipboard) — промежуточное хранилище данных, предоставляемое программным обеспечением и предназначенное для переноса или копирования между приложениями или частями одного приложения.

Действия с буфером обмена:

  • Операции вырезать и копировать
  • Операция вставить
  • Операция переместить

Буфер обмена предназначен для хранения в памяти данных и передачи их между разными приложениями. Объект в буфере обмена может быть представлен в любом формате данных, называемом форматом буфера обмена. Каждый формат определен целым значением. Для стандартных форматов буфера обмена эти значения являются константами.

Архитектура персонального компьютера

Архитектурой ПК (персонального компьютера) принято называть совокупность структуры, отражающей состав и обслуживающее ПО. Структурой называется комплекс функциональных систем ПК и их связующих элементов.

Особенности архитектуры являются определяющими факторами при рассмотрении принципов действия ПК, программно-информационных связей и последовательности соединения всех узлов логики компьютера. К узлам логики относят: ОЗУ (оперативная память), ЦП (центральный процессор), внешнее устройство памяти (жесткий диск), графический модуль (видеокарта), периферийные модули. Основным, принципиальным элементом архитектуры любого ПК, являются блоки программного управления.

Классическая архитектура фон Неймана

Группа ученых, в составе которой были американцы Г.Голдштейн, Дж. фон Нейман и А. Беркс, в 1946 году провели колоссальную работу по разработке новых принципов и архитектуры ЭВМ. Работа математиков легла в основу при создании компьютеров первого и второго поколений. Принципы фон Неймана были сохранены, хоть и существенно видоизменились, во время работ по созданию машин следующих поколений.

Основные принципы фон Неймана:

Интеграция методов двоичного счисления позволила упростить работу устройств и сделать ее выполнение гораздо быстрее, чем это было при использовании десятичной системы.

Программное управление ПК

Функционал ПК зависит от исправной работы программного обеспечения. Программа, управляющая компьютерной системой представляет собой набор последовательно исполняющихся команд. Проблема низких показателей быстродействия, актуальная для ранних ПК, была решена интеграцией модуля памяти, применяемого для записи программных данных. Кодированные в двоичной системе данные и командные коды, расположены в пронумерованных адресных блоках. Возможность быстрого доступа к адресной ячейки сделало возможной работу в переменных программных средах.

Условный переход при исполнении программы

По умолчанию программные компоненты имеют последовательную модель исполнения, но существует возможность реализации перехода к любому месту кода. Главным преимуществом подобного механизма стало превращение программного продукта из постоянной величины в изменяемую, аппаратная же часть осталась статичной и достаточно простой.

Фон Нейман предложил собственную структура персонального компьютера (рис. 1).

В состав ПК предложенного математиком входили:

  • Устройство памяти или ЗУ;
  • Устройство исполнения арифметико-логических задач или АЛУ;
  • Управляющее устройство (УУ) задействованное в работе по координации работы узловых элементов ПК;
  • Периферийные устройства ввода/вывода.

В данной модели ПК любой тип данных вводится в устройство запоминания опосредованно через АЛУ посредствам устройств ввода/вывода. Программные команды фиксируются последовательно в блоках памяти, тогда как обрабатываемые данные записываются в блоках произвольно.

Простейшая команда содержала в себе информацию об операции требующей выполнения и адресов памяти, хранящей данные требуемые для выполнения данной операции. Кроме этого в команде прописывались адреса блоков памяти доступных для сохранения результата выполнения команды. Арифметико-логическое устройство выводило обработанные данные в устройство запоминания или в выводное устройство. Существенным отличием систем подобного рода является форма данных удобная для сохранения и обработки, а также для восприятия человека при передачи на устройство вывода (печатающее устройство или монитор).

Устройство управление одного компьютера способно взаимодействовать с аналогичным компонентом другого ПК, получая и передавая информацию. Адрес первой команды ПК записывается в регистре УУ, регистрируясь счетчиком. После записи устройство управления осуществляет считывание памяти и перемещает содержимое заданной ячейки в командный регистр. Следующей операцией является определение командной операции и «выставление отметки» о ней в ячейке памяти, также регистрируются адреса и командные данные. В ходе текущих операций происходит контроль выполняемой команды.

Выполнение операции осуществляется аппаратная оснастка компьютера или АЛУ. По завершению выполнения команд значение счетчика увеличивается на единицу, что является сигналом для запуска следующей команды. При необходимости запуска команд без стандартной очередности, запускается команда переадресации, содержащая целевой адрес ячейки запуска управляющей команды.

Архитектура современных ПК

Современные компьютеры имеют магистрально-модульный тип архитектуры, то есть состоят из относительно самостоятельных компонентов, связанных между собой через ЦП.

Читать еще:  Архитектура операционной системы это

Принцип модульности позволяет осуществлять произвольную комплектацию ПК устанавливая совместимые компоненты. Кроме этого современные ПК имеют возможность модернизации и улучшения. В данной системе функционирует магистральный тип обмена информацией. Для обеспечения взаимосвязи компонентов ПК используется магистральная шина, располагаемая на материнской плате в виде печатной платы. Преимуществом подобного вида ПК является возможность добавления или замены комплектующих.

Благодаря принципиальным переменам в архитектуре ПК произошло значительное повышение скорости обработки и обмена информации. Считываемая информация хранится в системной памяти, что позволяет работать напрямую с ЦП и значительно ускоряет работу ПК в целом. Максимум быстродействия ограничен скоростью обработки данных самой магистрали, чем выше данный показатель, тем выше скорость работы ПК в целом.

Для решения вопроса предпринято следующее:

    Системная память напрямую (без буферов) подключается к шине, вместо магистрали, что избавляет ПК от проблем со скоростью обмена данных. Данное решение актуализировалось максимально с выходом высокопроизводительных ПК. Новшества привели к существенным изменением архитектуры и замене одношинных ПК трехшинными.

  • Логическое и управленческое устройство ПК нового поколения, являются компонентами центрального процессора, формируя его как единицу. В сущности, микропроцессор — это совокупность интегральных схем.
  • Многопроцессорная архитектура ПК

    Существуют компьютеры с несколькими процессорами, работающими параллельно. Такие ПК называются многопроцессорными и используются при необходимости обработать очень большой объем информации за максимально короткое время.

    Многомашинная вычислительная система

    В отличие от многопроцессорных ПК, имеющих единый канал оперативной памяти, в многомашинных ПК, каждому процессору доступен свой блок ОЗУ. Эффективность подобных систем проявляется при выполнении сложных задач, требующих работы специальной структуры с тем количеством ПК, сколько подзадач необходимо выполнить. Комплексы с несколькими процессорами или многомашинные системы значительно отличаются от «обычных» ПК по показателю быстродействия.

    Архитектура с параллельными процессорами

    Подобная система работает под управлением одного УУ, взаимодействующего с несколькими АЛУ. Подобный принцип позволяет обрабатывать большой объем информации в одном потоке. Актуален данный принцип только при выполнении однотипных задач с различным набором данных.

    В настоящее время встречаются более сложные архитектурные решения, а также вариации ПК, в которых применяется несколько классических архитектурных принципов.

    Архитектура персонального компьютера. назначение основных узлов. функциональные характеристики компьютера

    1.Компьютер. Ознакомление с архитектурой компьютера.

    2.Изучение основных функциональных характеристик компьютера.

    3.Ознакомление с внутренним содержимым системного блока ПК.

    Тип урока: ознакомление с новым материалом

    1.Опрос домашнего задания. Краткое повторение пройденной темы.

    2.Изучение нового материала.

    4.Инструкция к выполнению домашнего задания.

    Компьютер — это многофункциональное электронное устройство, предназначенное для накопления, обработки и передач» информации. Под архитектурой персонального компьютера понимается его логическая организация, структура и ресурсы, т. е. средства вычислительной системы, которые могут быть выделены процессу обработки данных на определенный интервал времени.

    В основу построения большинства компьютеров положены принципы, сформулированные Джоном фон Нейманом.

    1. Принцип программного управления — программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

    2. Принцип однородности памяти — программы и иные хранятся в одной и той же памяти; над командами можно выполнять те же действия, что и над данными!

    3. Принцип адресности — основная память структурно состоит из пронумерованных ячеек.

    Компьютеры, построенные на этих принципах, имеют классическую архитектуру.

    Архитектура компьютера определяет принцип действия, информационные связи и взаимное соединение сновных логических узлов компьютера, к которым относятся:

    • центральный процессор;
    • основная память;
    • внешняя память;
    • периферийные устройства.

    Конструктивно персональные компьютеры выполнены в виде центрального системного блока, к которому через специальные разъемы присоединяются другие устройства. В состав системного блока входят все основные узлы компьютера:

    • системная плата;
    • блок питания;
    • накопитель на жестком магнитном диске;
    • накопитель на гибком магнитном диске;
    • накопитель на оптическом диске;
    • разъемы для дополнительных устройств.

    На системной (материнской) плате в свою очередь размещаются:

    • микропроцессор;
    • математический сопроцессор;
    • генератор тактовых импульсов;
    • микросхемы памяти;
    • контроллеры внешних устройств;
    • звуковая и видеокарты;
    • таймер.

    Архитектура современных персональных компьютеров основана на магистрально-модульном принципе. Модульный принцип позволяет пользователю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация системы опирается на магистральный принцип обмена информацией. Все контроллеры устройств взаимодействуют с микропроцессором и оперативной памятью через системную магистраль передачи данных, называемую системной шиной. Системная шина выполняется в виде печатного мостика на материнской плате.

    Микропроцессор — это центральный блок персонального компьютера, предназначенный для управления работой всех блоков машины и для выполнения арифметических и логических операций над информацией.

    Системная шина является основной интерфейсной системой компьютера, обеспечивающей сопряжение и связь всех его устройств между собой. Системная шина обеспечивает три направления передачи информации:

    • между микропроцессором и основной памятью;
    • между микропроцессором и портами ввода-вывода внешних устройств;
    • между основной памятью и портами ввода-вывода внешних устройств.

    Порты ввода-вывода всех устройств через соответствующие разъемы (слоты) подключаются к шине либо непосредственно, либо через специальные контроллеры (адаптеры).

    Основная память предназначена для хранения и оперативного обмена информацией с прочими блоками компьютера.

    Внешняя память используется для долговременного хранения информации, которая может быть в дальнейшем использована для решения задач. Генератор тактовых импульсов генерирует последовательность электрических символов, частота которых задает тактовую частоту компьютера. Промежуток времени между соседними импульсами определяет такт работы машины.

    Источник питания — это блок, содержащий системы автономного и сетевого питания компьютера.

    Таймер — это внутримашинные электронные часы, обеспечивающие автоматический съем текущего момента времени. Таймер подключается к автономному источнику питания и при отключении компьютера от сети продолжает работать.

    Внешние устройства компьютера обеспечивают взаимодействие машины с окружающей средой: пользователями, объектами управления и другими компьютерами.

    Основными функциональными характеристиками персонального компьютера являются:

    1. производительность, быстродействие, тактовая частота. Производительность современных ЭВМ измеряют обычно в миллионах операций в секунду;

    2. разрядность микропроцессора и кодовых шин интерфейса. Разрядность — это максимальное количество разрядов двоичного числа, над которым одновременно может выполняться машинная операция, в том числе и операция передачи информации; чем больше разрядность, тем, при прочих равных условиях, будет больше и производительность ПК;

    3. типы системного и локальных интерфейсов. Разные типы интерфейсов обеспечивают разные скорости передачи информации между узлами машины, позволяют подключать разное количество внешних устройств и различные их виды;

    4. емкость оперативной памяти. Емкость оперативной памяти измеряется обычно в Мбайтах. Многие современные прикладные программы с оперативной памятью, имеющей емкость меньше 16 Мбайт, просто не работают либо работают, но очень медленно;

    5. емкость накопителя на жестких магнитных дисках (винчестера). Емкость винчестера измеряется обычно в Гбайтах;

    6. тип и емкость накопителей на гибких магнитных дисках. Сейчас применяются накопители на гибких магнитных дисках, использующие дискеты диаметром 3,5 дюйма, имеющие стандартную емкость 1,44 Мб;

    7. наличие, виды и емкость кэш-памяти. Кэш-память — это буферная, недоступная для пользователя быстродействующая память, автоматически используемая компьютером для ускорения операций с информацией, хранящейся в более медленно действующих запоминающих устройствах. Наличие кэш-памяти емкостью 256 Кбайт увеличивает производительность персонального компьютера примерно на 20%;

    8. тип видеомонитора и видеоадаптера;

    9. наличие и тип принтера;

    10.наличие и тип накопителя на компакт дисках CD-ROM;

    11.наличие и тип модема;

    12.наличие и виды мультимедийных аудиовидео-средств;

    13.имеющееся программное обеспечение и вид операционной системы;

    14.аппаратная и программная совместимость с другими типами ЭВМ. Аппаратная и программная совместимость с другими типами ЭВМ означает возможность использования на компьютере, соответственно, тех же технических элементов и программного обеспечения, что и на других типах машин;

    15.возможность работы в вычислительной сети;

    16.возможность работы в многозадачном режиме. Многозадачный режим позволяет выполнять вычисления одновременно по нескольким программам (многопрограммный режим) или для нескольких пользователей (многопользовательский режим);

    17.надежность. Надежность — это способность системы выполнять полностью и правильно все заданные ей функции;

    Домашнее задание:Повторение лекции. Создать презентацию на тему: «Устройства ввода и вывода информации».

    Статьи к прочтению:

    Архитектура | Большой скачок

    Похожие статьи:

    Компьютер— это многофункциональное электронное устройство, предназначенное для накопления, обработки и передач» информации. Подархитектурой персонального…

    Под архитектурой компьютера понимается его логическая организация, структура, ресурсы, т.е. средства вычислительной системы, которые могут быть выделены…

    Ссылка на основную публикацию
    Adblock
    detector