Remkomplekty.ru

IT Новости из мира ПК
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Внутренний уровень архитектуры субд

Трехуровневая архитектура базы данных

Одним из важнейших аспектов развития СУБД является идея отделения логической структуры БД и манипуляций данными, необходимыми пользователям, от физического представления, требуемого компьютерным оборудованием.

Одна и та же БД в зависимости от точки зрения может иметь различные уровни описания. По числу уровней описания данных, поддерживаемых СУБД, различают одно-, двух- и трехуровневые системы. В настоящее время чаще всего поддерживается трехуровневая архитектура описания БД , с тремя уровнями абстракции, на которых можно рассматривать базу данных. Такая архитектура включает: ƒ внешний уровень, на котором пользователи воспринимают данные, где отдельные группы пользователей имеют свое представление (ПП) на базу данных; ƒ внутренний уровень, на котором СУБД и операционная система воспринимают данные; ƒ концептуальный уровень представления данных, предназначенный для отображения внешнего уровня на внутренний уровень, а также для обеспечения необходимой их независимости друг от друга; он связан с обобщенным представлением пользователей.

Описание структуры данных на любом уровне называется схемой.

Существует три различных типа схем базы данных, которые определяются в соответствии с уровнями абстракции трехуровневой архитектуры. На самом высоком уровне имеется несколько внешних схем или подсхем, которые соответствуют разным представлениям данных. На концептуальном уровне описание базы данных называют концептуальной схемой, а на самом низком уровне абстракции — внутренней схемой.

Основным назначением трехуровневой архитектуры является обеспечение независимости от данных. Суть этой независимости заключается в том, что изменения на нижних уровнях никак не влияют на верхние уровни.

Различают два типа независимости от данных: логическую и физическую.

· Логическая независимость от данных означает полную защищенность внешних схем от изменений, вносимых в концептуальную схему.

Такие изменения концептуальной схемы, как добавление или удаление новых сущностей, атрибутов или связей, должны осуществляться без необходимости внесения изменений в уже существующие внешние схемы для других групп пользователей.

· Физическая независимость от данных означает защищенность концептуальной схемы от изменений, вносимых во внутреннюю схему. Такие изменения внутренней схемы, как использование различных файловых систем или структур хранения, разных устройств хранения, модификация индексов или хеширование, должны осуществляться без необходимости внесения изменений в концептуальную или внешнюю схемы.

Далее рассмотрим каждый из трех названных уровней.

Внешний уровень — это пользовательский уровень. Пользователем может быть программист, или конечный пользователь, или администратор базы данных. Представление базы данных с точки зрения пользователей называется внешним представлением. Каждая группа пользователей выделяет в моделируемой предметной области, общей для всей организации, те сущности, атрибуты и связи, которые ей интересны. Эти частичные или переопределенные описания БД для отдельных групп пользователей или ориентированные на отдельные аспекты предметной области называют подсхемой.

Концептуальный уровень является промежуточным уровнем в трехуровневой архитектуре и обеспечивает представление всей информации базы данных в абстрактной форме. Описание базы данных на этом уровне называется концептуальной схемой, которая является результатом концептуального проектирования. Концептуальное проектирование базы данных включает анализ информационных потребностей пользователей и определение нужных им элементов данных. Таким образом, концептуальная схема — это единое логическое описание всех элементов данных и отношений между ними, логическая структура всей базы данных. Для каждой базы данных имеется только одна концептуальная схема. Концептуальная схема должна содержать: ƒ сущности и их атрибуты; ƒ связи между сущностями; ƒ ограничения, накладываемые на данные; ƒ семантическую информацию о данных; ƒ обеспечение безопасности и поддержки целостности данных.

Внутренний уровень является третьим уровнем архитектуры БД. Внутреннее представление не связано с физическим уровнем, так как физический уровень хранения информации обладает значительной индивидуальностью для каждой системы. На нижнем уровне находится внутренняя схема, которая является полным описанием внутренней модели данных. Для каждой базы данных существует только одна внутренняя схема.

Внутренняя схема описывает физическую реализацию базы данных и предназначена для достижения оптимальной производительности и обеспечения экономного использования дискового пространства. На внутреннем уровне хранится следующая информация: ƒ распределение дискового пространства для хранения данных и индексов; ƒ описание подробностей сохранения записей (с указанием реальных размеров сохраняемых элементов данных); ƒ сведения о размещении записей; ƒ сведения о сжатии данных и выбранных методах их шифрования. СУБД отвечает за установление соответствия между всеми тремя типами схем разных уровней, а также за проверку их непротиворечивости. Ниже внутреннего уровня находится физический уровень, который контролируется операционной системой, но под руководством СУБД. Физический уровень учитывает, каким образом данные будут представлены в машине. Он обеспечивает физический взгляд на базу данных: дисководы, физические адреса, индексы, указатели и т. д. За этот уровень отвечают проектировщики физической базы данных, которые работают только с известными операционной системе элементами. Область их интересов: указатели, реализация последовательного распределения, способы хранения полей внутренних записей на диске. Однако функции СУБД и операционной системы на физическом уровне не вполне четко разделены и могут варьироваться от системы к системе.

23. Логическая структура данных и операции над данными в иерархической модели.

Логическая структура данных –это созданная программными средствами образное, абстрактное ее представление. При этом оба представления могут сосуществовать при самых разных сочетаниях их свойств: одномерная – двумерная, линейная – нелинейная .

Организация данных в СУБД иерархического типа определяется в терминах: элемент, агрегат, запись (группа), групповое отношение, база данных.

  • Атрибут (элемент данных)— наименьшая единица структуры данных. Обычно каждому элементу при описании базы данных присваивается уникальное имя. По этому имени к нему обращаются при обработке. Элемент данных также часто называют полем.
  • Запись — именованная совокупность атрибутов. Использование записей позволяет за одно обращение к базе получить некоторую логически связанную совокупность данных. Именно записи изменяются, добавляются и удаляются. Тип записи определяется составом ее атрибутов. Экземпляр записи — конкретная запись с конкретным значением элементов
  • Групповое отношение — иерархическое отношение между записями двух типов. Родительская запись (владелец группового отношения) называется исходной записью, а дочерние записи (члены группового отношения) — подчиненными. Иерархическая база данных может хранить только такие древовидные структуры.

Корневая запись каждого дерева обязательно должна содержать ключ с уникальным значением. Ключи некорневых записей должны иметь уникальное значение только в рамках группового отношения. Каждая запись идентифицируется полным сцепленным ключом, под которым понимается совокупность ключей всех записей от корневой по иерархическому пути.

При графическом изображении групповые отношения изображают дугами ориентированного графа, а типы записей — вершинами (диаграмма Бахмана).

Для групповых отношений в иерархической модели обеспечивается автоматический режим включения и фиксированное членство. Это означает, что для запоминания любой некорневой записи в БД должна существовать ее родительская запись . При удалении родительской записи автоматически удаляются все подчиненные.

Рассмотрим следующую модель данных предприятия (см. рис. 3.1): предприятие состоит из отделов, в которых работают сотрудники. В каждом отделе может работать несколько сотрудников, но сотрудник не может работать более чем в одном отделе.

Поэтому, для информационной системы управления персоналом необходимо создать групповое отношение, состоящее из родительской записи ОТДЕЛ (НАИМЕНОВАНИЕ_ОТДЕЛА, ЧИСЛО_РАБОТНИКОВ) и дочерней записи СОТРУДНИК (ФАМИЛИЯ, ДОЛЖНОСТЬ, ОКЛАД). Это отношение показано на рис. (а) (Для простоты полагается, что имеются только две дочерние записи).

Для автоматизации учета контрактов с заказчиками необходимо создание еще одной иерархической структуры : заказчик — контракты с ним — сотрудники, задействованные в работе над контрактом. Это дерево будет включать записи ЗАКАЗЧИК(НАИМЕНОВАНИЕ_ЗАКАЗЧИКА, АДРЕС), КОНТРАКТ(НОМЕР, ДАТА,СУММА), ИСПОЛНИТЕЛЬ (ФАМИЛИЯ, ДОЛЖНОСТЬ, НАИМЕНОВАНИЕ_ОТДЕЛА) (рис. (b)).

Рис. 3.1

Из этого примера видны недостатки иерархических БД:

  • Частично дублируется информация между записями СОТРУДНИК и ИСПОЛНИТЕЛЬ (такие записи называют парными), причем в иерархической модели данных не предусмотрена поддержка соответствия между парными записями.
  • Иерархическая модель реализует отношение между исходной и дочерней записью по схеме 1:N, то есть одной родительской записи может соответствовать любое число дочерних. Допустим теперь, что исполнитель может принимать участие более чем в одном контракте (т.е. возникает связь типа M:N). В этом случае в базу данных необходимо ввести еще одно групповое отношение, в котором ИСПОЛНИТЕЛЬ будет являться исходной записью, а КОНТРАКТ — дочерней (рис. (c)). Таким образом, мы опять вынуждены дублировать информацию.

3.1.2.Операции над данными, определенные в иерархической модели:

  • ДОБАВИТЬ в базу данных новую запись. Для корневой записи обязательно формирование значения ключа.
  • ИЗМЕНИТЬ значение данных предварительно извлеченной записи. Ключевые данные не должны подвергаться изменениям.
  • УДАЛИТЬ некоторую запись и все подчиненные ей записи.
  • ИЗВЛЕЧЬ:
    • извлечь корневую запись по ключевому значению, допускается также последовательный просмотр корневых записей
    • извлечь следующую запись (следующая запись извлекается в порядке левостороннего обхода дерева)

В операции ИЗВЛЕЧЬ допускается задание условий выборки (например, извлечь сотрудников с окладом более 1 тысячи руб.)

Как видим, все операции изменения применяются только к одной «текущей» записи (которая предварительно извлечена из базы данных). Такой подход к манипулированию данных получил название «навигационного».

Трехуровневая архитектура СУБД;

Концептуальная, логическая и физическая модели предметной области

Трехуровневая архитектура СУБД

Предметная область представляет собой часть реального мира, которая исследуется или исполь­зуется. Это может быть «Заказ» (см. пример в п. 1.3), «Изготовление изделий на заказ», «Сбыт готовой продукции», «Оформление заказов через Интернет» и др. Из-за сложности предметной области охватить ее аспекты в одноуровневой модели не представляется возможным. Поэтому используются три уровня: концептуальный (понятийный), логический и физический.

Концептуальный уровень отражает предметную область в самом общем виде. Он определяет содер­жание и структуру предметной области безотносительно к моделям данных (см. раздел 2) и типу используемой СУБД. Этот уровень должен быть понятен пользователю и полностью независим от того, как данные будут храниться в действительности. Изменения в этой модели должны производиться только при изменениях в реальном мире, чтобы эта модель продолжала быть отражением предметной области.

Логический уровень является промежуточным, на котором производится формализация модели. На этом уровне предметная область отображается в виде информационных объектов (сущностей) и связей между ними. Для реляционной модели сущности являются «прообразами» таблиц, а связи отображают отношения между ними. Логическая модель лежит в основе построения БД, в том числе и с использованием CASE-средств.

Физический уровень модели предметной области определяет способ реализации в среде выбранной СУБД. Одной логической модели может соответствовать несколько физических моделей (для разных СУБД). В CASE-средствах осуществляется автоматическое преобразование логической модели в физическую для выбранной конкретной СУБД. На основе физической модели осуществляется проектирование структуры базы данных. С использованием CASE-средств этот процесс происходит автоматически и называется прямым проектированием. CASE-средства позволяют также на основе существующей БД создавать физическую, а затем и логическую модели (обратное проектирование).

Первые попытки стандартизации общей архитектуры СУБД относятся к 1971 году, когда был предложен двухуровневый подход к архитектуре СУБД на основе использования системного представления, включающего понятие схемы базы данных и пользовательских представлений (подсхем).

В 1978 году комитетом ANSI/SPARC (ANSI, American National Standard Institute – Национальный институт стандартизации США; SPARC, Standard Planning and Requirements Committee – Комитет планирования стандартов и норм) официально зафиксировано различие между логическим и физическим представлением данных. В частности, была предложена обобщенная структура систем с базой данных.

Читать еще:  Архитектурная концепция это

Эта структура получила название трехуровневой архитектуры, включающей внутренний, концептуальный и внешний уровни (рис. 2.1).

Введение трехуровневой архитектуры БД позволило отделить пользовательское представление БД от ее физического представления.

Необходимость такого отделения обусловлена, прежде всего, следующими причинами:

· каждый пользователь должен иметь возможность обращаться к одним и тем же данным, используя собственное представление об этих данных, а также изменять его при необходимости, что не должно оказывать влияния на представление о данных других пользователей;

· обращение пользователя к БД на должно зависеть от особенностей хранения в ней данных;

· администратор БД может при необходимости изменять структуру хранения данных в базе, включая концептуальную структуру БД, причем данные действия не должны влиять на пользовательские представления данных;

· внутренняя структура хранения данных не должна зависеть от изменения физических устройств хранения информации.

Рис. 3.2. Трехуровневая архитектура СУБД

Таким образом, в трехуровневой модели СУБД:

Внутренний уровень – это уровень, определяющий физический вид БД, наиболее близкий к физическому хранению. Он связан со способами хранения информации на физических устройствах. К данному уровню имеют отношение дисководы, физические адреса, индексы, указатели и т.д. За работу данного уровня отвечают проектировщики физической БД, которые решают, какие физические устройства будут хранить данные, какие методы доступа к данным будут использоваться и какие меры следует принять для поддержания или повышения быстродействия СУБД. Для пользователей данный уровень закрыт.

Концептуальный уровень – структурный уровень, который дает представление о логической схеме БД. На данном уровне выполняется концептуальное проектирование БД, которое включает анализ информационных потребностей пользователей и определение нужных им элементов данных. Результатом концептуального проектирования является концептуальная схема БД, а также логическое описание всех элементов данных и отношений между ними. Как было сказано выше, концептуальная схема БД не связана напрямую с выбранной моделью данных и СУБД, в то время как логическая схема уже предполагает представление структуры данных в рамках выбранной модели (см. раздел 2).

Внешний уровень – структурный уровень БД, определяющий пользовательские представления данных. Каждый пользователь или группа пользователей получают свое собственное представление данных в БД. Такое пользовательское описание элементов данных и отношений между ними можно напрямую вывести из концептуальной схемы. Совокупность различных пользовательских представлений данных и образует внешний уровень [20, С.9-13].

В разделе 2.1 был показан пример схемы данных (рис. 2.1). Под схемой данных (схемой базы данных) понимается общее описание базы данных. В соответствии с трехуровневой архитектурой различают и три типа схем базы данных.

Внешнему уровню представления БД соответствуют, как правило, несколько внешних схем (подсхем) БД. Каждая из таких схем соответствует представлению данных определенной группы пользователей СУБД.

Концептуальная схема описывает все элементы данных, связи между ними, а также необходимые ограничения для поддержки целостности данных. Для каждой БД имеется только одна концептуальная схема данных.

Внутренняя схема является полным описанием внутренней модели данных и содержит определения хранимых записей, методы представления, описания полей данных, сведения об индексах и пр. Также как и для концептуальная схема, внутренняя схема для каждой БД только одна.

Исходя из различных схем БД в трехуровневой модели, следует, что СУБД должна устанавливать соответствие и следить за непротиворечивостью схем: внешними, концептуальной и внутренней.

Концептуальная схема — центральное связующее звено между каждой внешней схемой и внутренней схемой БД. Концептуальная схема связана с внутренней схемой посредством внутреннего концептуального отображения. Каждая внешняя схема, в свою очередь, связана с концептуальной схемой с помощью внешнего концептуального отображения, которое позволяет отображать пользовательское представление на соответствующую часть концептуальной схемы.

В теории и практике баз данных принято различать понятия «описание базы данных» и «база данных» [20, С.12-13].

Под описанием базы данных понимают схему БД, создаваемую в процессе проектирования БД, изменение которой предполагается в исключительных случаях.

Под базой данных понимается вся информация, содержащаяся в базе, которая может изменяться с течением времени. Совокупность информации, хранящейся в БД в любой определенный момент времени, называется состоянием базы данных. Таким образом, одной и той же схеме БД может соответствовать множество различных состояний БД. Состояние БД также называется детализацией.

Главное назначение трехуровневой архитектуры – обеспечение независимости от данных, т.е. любые изменения на нижних уровнях БД не должны влиять на верхние уровни.

Независимость бывает двух типов:

· логическая – полная защищенность внешних схем от изменений, которые вносятся в концептуальную схему;

· физическая – защищенность концептуальной схемы от изменений, которые вносятся во внутреннюю схему.

IT-блог о веб-технологиях, серверах, протоколах, базах данных, СУБД, SQL, компьютерных сетях, языках программирования и создание сайтов.

Архитектура СУБД. Архитектура баз данных. Логическая структура СУБД. Описание данных в базе данных. Базы данных схема данных

  • 08.12.2012
  • Базы данных
  • 2 комментария

Здравствуйте, уважаемые посетители моего скромного блога для начинающих вебразработчиков и web мастеров ZametkiNaPolyah.ru. Продолжаем рубрику Заметки о MySQL, в которой уже были публикации: Нормальные формы и транзитивная зависимость, избыточность данных в базе данных, типы и виды баз данных, настройка MySQL сервера и файл my.ini, MySQL сервер, установка и настройка. Сегодня мы поговорим о логической структуре СУБД и архитектуре баз данных. Как всегда, я постараюсь описать архитектуру СУБД на простом и понятном языке, без всяких сложных и умных слов.

Проблема отделения логической структуры баз данных и управление данными встала давно, и решение этих проблем является развитием СУБД. Грубо говоря, пользовательский интерфейс СУБД должен быть отделен от физического интерфейса баз данных или физического представления баз данных, которое требуется компьютеру.

Одна и та же база данных, в зависимости от того, как на нее смотреть может быть представлена по-разному, по-другому, база данных может иметь различные уровни описания и MySQL сервер в данном случае не является исключением, все, что будет написано далее, в полной мере справедливо и для MySQL сервера.

Число уровней описания зависит от реализации сервера баз данных или от реализации СУБД. Существует одноуровневая система управления базами данных. Двух уровневая СУБД и трехуровневая СУБД. Рассматривать одноуровневые и двухуровневые СУБД нет смысла, поскольку в настоящее время используются в основном трехуровневые системы. Системы с трехуровневым описанием данных имеют три уровня абстракции, на которых можно осуществляется взаимодействие с базой данных. И так, перейдем к делу.

Трехуровневая архитектура баз данных. Три уровня абстракции описания данных.

Самым важным аспектом трехуровневой архитектуры базы данных является то, что логическая структура, с которой взаимодействует пользователь, отделена от физической структуры баз данных, с которой взаимодействует машина. Давайте посмотрим, что включает в себя трехуровневая архитектура баз данных:

  • В базах данных с трех уровневой архитектурой всегда есть внешний уровень, на котором пользователю предоставляется интерфейс для манипуляции данных, на внешнем уровне задаются права доступа пользователей на взаимодействие с базой данных, приоритеты и т.д.
  • У трехуровневых СУБД есть всегда имеется внутренний уровень, на котором СУБД и операционная система воспринимают и обрабатывают данные
  • Поскольку архитектура у нас трех уровневая, то третий уровень отвечает за связь между внешним уровнем (пользовательским интерфейсом) и внутренним уровнем (физическим представлением данных в базе данных). Третий уровень получил название концептуальный уровень представления данных. Концептуальный уровень представления данных предназначен для отображения внешнего уровня на внутренний, он обеспечивает независимость между этими уровнями.

Для наглядности можете посмотреть на рисунок, на нем продемонстрирована структура трехуровневой СУБД:

Структура базы данных

На этом рисунке, все упрощено до безобразия, но он позволяет себе представить архитектуру баз данных и способы взаимодействия между уровнями.

Базы данных. Схема данных. Независимость уровней от данных.

С архитектурой баз данных мы более или менее разобрались, теперь можем поговорить и об описание данных в базе данных. Описание структуры данных на любом из трех уровней называется схемой данных. Поскольку у нас три уровня абстракции данных, то соответственно должно быть три схемы данных, которые позволяют представить разработчику структуру данных на любом из трех уровней.

Каждая схема данных имеет свое собственное название и зависит от уровня. На самом высоком или внешнем уровне имеется несколько внешних схем данных или подсхем. На концептуальном уровне описание базы данных происходит при помощи концептуальных схем. Внутренний уровень СУБД описывается при помощи внутренней схемы данных.

Целью создания трехуровневой архитектуры базы данных была независимость данных от уровней. Под термином независимостью данных нужно понимать следующее: изменения на нижних уровнях (концептуальный и внутренний уровень) в идеале никак не должны влиять на верхний уровень. Существует два типа независимости данных: логическая независимость от данных и физическая независимость от данных.

Логическая независимость от данных означает, что все ваши внешние схемы останутся неизменны, если вы будете вносить изменения на концептуальном уровне СУБД, то есть вносить изменения в концептуальную схему данных. Вносить изменения в концептуальную схему данных означает: добавление и удаление новых сущностей (новых таблиц), добавление атрибутов(столбцов) или создание новых связей между таблицами. Все вышеперечисленные операции должны осуществляться без необходимости внесения изменений в уже существующие внешние схемы данных.

Физическая независимость от данных означает, что ваша концептуальная схема данных будет защищена от изменений и будет независима от изменений на внутреннем уровне (изменение внутренней схемы данных). Под изменение внутренней схемы данных стоит понимать: изменение файловой структуры хранения данных, использование различных файловых систем, использование различных запоминающих устройств, модификация индексов и т.д. Так вот, все эти изменения никак не должны влиять на концептуальную и внешнюю схемы данных.

Внешний уровень абстракции. Внешняя схема данных. Внешнее представление базы данных.

Внешний уровень – это пользовательский уровень, по-другому – пользовательский интерфейс. Внешняя схема данных описывает то, как видят различные группы пользователей архитектуру базы данных. Под пользователем стоит понимать: конечного пользователя базы данных, проектировщика базы данных, администратора базы данных и т.д. Внешнее представление базы данных – это то, как видит пользователь структуру базы данных.

Пользователи могут быть разбиты на группы по приоритетам и правам доступа – это означает, что для каждой пользовательской группы существует своя внешняя схема данных базы данных, свое представления данных, свои сущности, свои атрибуты и свои связи, именно те, которые доступны для каждой группы пользователей.

Такое частичное описание базы данных или частичная схема базы данных получило название подсхема. Группа пользователей видит только то, что ей необходимо или только то, что ей разрешили увидеть. Также определенная группа пользователей может совершать только те действия, которые ей разрешены.

Читать еще:  805а8011 ошибка на нокиа

Концептуальная схема данных. Концептуальное представление базы данных.

Концептуальный уровень представления данных – это промежуточное звено между внутренним и внешним уровнями, это интерфейс взаимодействия между этими двумя уровнями. Концептуальная схема предназначена для абстрактного представления всей базы данных. Разработка концептуальной схемы данных называется концептуальным проектированием базы данных, которое включает в себя: оценку и учет потребностей пользователей и выделение для них соответствующих прав и определение для них нужных элементов управления и взаимодействия с БД.

Концептуальная схема – это единое логическое описание базы данных, логическая структура базы данных. Концептуальная схема определяет все логические элементы базы данных (сущности, атрибуты и т.д) и способы связи между ними. У любой базы данных может быть только одна концептуальная схема данных, которая должна включать в себя:

  1. Таблицы и их атрибуты
  2. Связи между таблицами
  3. Ограничения, накладываемые на данные
  4. Семантику данных
  5. В концептуальной схеме данных должны быть учтены аспекты безопасности и целостности данных

Внутренний уровень абстракции. Внешняя схема данных. Внутреннее представление базы данных.

Внутренний уровень представления данных – это третий и последний по счету уровень архитектуры базы данных. Внутреннее представление данных не связано с их физическим представлением, так как каждая СУБД и каждый сервер баз данных имеет собственное представление данных на физическом уровне.

Внутренняя схема данных – это полное описание физической реализации базы данных. При помощи внутренней схемы данных осуществляется настройка СУБД (настройка MySQL сервера). С ее помощью можно достичь оптимальной производительности СУБД и обеспечить экономное использование места на носители информации.

Любая внутренняя схема данных обязательно хранит в себе:

  • То, как должно быть распределено дисковое пространство для хранения данных и индексы
  • Информацию о сохраненных записях
  • Сведения о уже имеющихся записях
  • Сведения о способах шифрования и сжатия данных

Задачей СУБД является обеспечение связи между всеми тремя уровнями, поддержание этих связей и проверка непротиворечивости между тремя уровнями представления данных. Устранять противоречия следует на этапе проектирования базы данных.

Ниже внутреннего уровня находится физический уровень, который контролируется операционной системой, но под руководством СУБД. Физический уровень учитывает, каким образом данные будут представлены в машине. Он обеспечивает физический взгляд на базу данных: дисководы, физические адреса, индексы, указатели и т. д. За этот уровень отвечают проектировщики физической базы данных, которые работают только с известными операционной системе элементами.

Область их интересов: указатели, реализация последовательного распределения, способы хранения полей внутренних записей на диске. Однако функции СУБД и операционной системы на физическом уровне не вполне четко разделены и могут варьироваться от системы к системе.

Архитектура БД. Модели данных, используемые на различных этапах проектирования БД.

Основной целью любой СУБД является возможность предложить обычному пользователю базы данных абстрактное представление данных, скрыв от пользователя особенности хранения и управления ими. Поскольку база данных, как правило, разрабатывается как общий ресурс для большого количества пользователей, то каждому пользователю может потребоваться своё, отличное от других пользователей представление о данных, хранимых в БД. Это вызвано следующими причинами:
— каждый пользователь иметь право обращаться к общим данным, используя своё представление о них;
— взаимодействие пользователя с БД не должно зависеть от особенностей её физической организации;
— администратор базы данных (АБД) должен иметь возможность изменять структуру и формат данных, не оказывая влияния на пользовательские представления;
— внутренняя структура БД не должна зависеть от таких изменений физических аспектов хранения информации, как переключение на новое устройство хранения;
— АБД должен иметь возможность изменять концептуальную или глобальную структуру данных без какого—либо влияния на всех пользователей.
Для удовлетворения этих потребностей архитектура большинства современных коммерческих СУБД, существующих на рынке программного обеспечения, в той или иной мере, строится на базе так называемой архитектуры ANSI—SPARC. Название произошло по названию комитета планирования стандартов и норм (Standards Planning and Requirements Committee SPARC) национального института стандартизации (American National Standard Institute— ANSI) США. Комитет признал необходимость использования трехуровневого подхода к организации БД. Этот подход отделяет пользовательские представления базы данных от её физического представления посредством создания независимого уровня, изолирующего программы от особенностей представления данных на низком уровне.
Архитектура БД представлена на рисунке 1.
Внешний уровень – это индивидуальное представление БД с точки зрения отдельного пользователей. Пользователи могут быть разные, с разным уровнем подготовки. Каждый пользователь представляет данные в соответствии с формами различных документов, присущих данной предметной области. При этом одни и те же данные могут иметь различную форму представления — формат (тип), длину. Например, сведения о зарплате – их можно увидеть в виде итоговой суммы в записи ведомости, либо в виде перечня составляющих – различных начислений и удержаний.

ПП1 – представление 1—го пользователя, ППк – представление к—того пользователя

Рисунок 1 — Трехуровневая архитектура БД

Некоторые представления могут включать производные или вычисляемые данные, которые не хранятся в БД, а создаются по мере необходимости пользователя.
Индивидуальное внешнее представление называют подсхемой.
Концептуальный уровень отображает обобщенное представление пользователей. Это промежуточный уровень в трехуровневой архитектуре БД, представляющий данные такими, какими они есть на самом деле, а не такими, какими их вынужден видеть пользователь в рамках какого—то инструментального средства или на формах приложений. Концептуальный уровень поддерживает каждое внешнее представление, однако не содержит сведений о методах хранения данных. Этот уровень интересен администратору БД и может быть представлен концептуальными схемами.
Внутренний уровень на языке определения данных (ЯОД) выбранной СУБД представляет, в каком виде информация хранится в БД, описывает структуры объектов БД. Внутреннее представление не связано с физическим уровнем, так как в нем не рассматривается организация физических записей (блоков и страниц памяти), физические области хранения.
Необходимо заметить, что описание уровней архитектуры БД можно представить в виде некоторого технического описания (бумажном или электронном), разработанного с помощью различных средств и правил.

В соответствии с архитектурой БД, существуют несколько внешних схем или подсхем, каждая из которых соответствует разным представлениям данных, одна концептуальная схема БД и одна внутренняя схема БД. Каждая внешняя схема связана с концептуальной с помощью внешне концептуального отображения. Концептуальная схема связана с внутренней посредством концептуально внутреннего отображения. Схемы и отображения создаются администратором БД средствами СУБД.

Основным назначением трехуровневой архитектуры БД является обеспечение независимости описаний базы данных (схем БД), получаемых на различных уровнях, следовательно, независимость прикладных программ от данных, что является одним из основных достоинств базы данных.

Различают логическую и физическую независимость данных.

Логическая независимость данных поддерживает защищенность внешних схем от изменений, вносимых на концептуальном уровне. Так, например, при функциональном развитии АИС проводится дообследование предметной области и в концептуальную схему добавляется описание новых данных предметной области. При этом некоторые внешние схемы даже не замечают этих изменений, часть пользователей работает с БД в прежнем виде.

Физическая независимость поддерживает защищенность концептуальной схемы от изменений, вносимых на физическом уровне. Например, добавление индексов, создание триггеров не требуют внесения изменений в концептуальную схему. Также, возможен перевод физической модели БД на ЯОД другой СУБД без внесения изменений во внешние схемы. Пользователь сможет заметить только увеличение производительности системы.
Для того чтобы создать БД необходимо осуществить проектирование схем каждого уровня архитектуры БД.

Модели данных

Одним из важнейших моментов в процессе проектирования БД является понимание концепций, лежащих в основе моделей данных, используемых как в качестве инструмента проектирования, так и в качестве результата проектирования. В сложившейся терминологии БД и инструменты проектирования, и его результаты рассматриваются как модели. Необходимо различать назначение каждой используемой в процессе проектирования модели данных.

В современной трактовке термин «модель данных» обозначает инструмент моделирования. Модель базы данных (схема данных) или модель предметной области являются результатами моделирования.

Модель данных это интегрированный набор понятий для описания данных, связей между ними и ограничений, накладываемых на данные на предприятии.

Для реализации успешного проектирования БД необходимо для каждой модели – инструмента знать три её основных компонента:
— набор правил, определяющих структуру данных;
— определение типов допустимых операций с данными;
— набор ограничений поддержки целостности данных.

Исходя из трехуровневой архитектуры БД, различают три, связанных между собой, модели данных, получаемых в результате проектирования и отображающие результаты проектирования.
1. Внешняя модель данных, отображает обобщенное представление всех пользователей. Эту модель называют описанием предметной области, формируемым на естественном языке. Представить внешнюю модель можно как в формализованном (схемы, рисунки, таблицы), так и в неформализованном (словесное описание на языке проектировщиков) виде.
2. Концептуальная модель. Она может быть выражена в виде диаграммы, схемы, рисунка, отображающего обобщенное логическое представление информации предметной области (концептуальная информационно логическая модель предметной области) или в виде рисунка, схемы, отображающего обобщенное логическое представление данных (концептуальная логическая модель данных), не зависимое от выбранной СУБД.
3. Внутренняя модель. Является результатом отображения концептуальной модели средствами языка определения данных выбранной СУБД.

В литературе по БД предложено и опубликовано достаточно много различных моделей данных, используемых при проектировании БД как инструментальное средство. Модели, отображающие уровни архитектуры БД, строятся по правилам этих моделей.

Модели данных, как инструменты, делятся на 3 основные категории:

1. Объектные модели данных. В этих моделях используются такие понятия как: классы объектов (типы сущностей), объекты (экземпляры сущностей), свойства классов объектов (атрибуты сущностей), связи между классами объектов. В скобках приведена исторически ранняя терминология, используемая в теории баз данных.
Среди объектных моделей выделяют наиболее общие типы:
— семантические модели. Их назначение – обеспечение возможности выражения семантики (смыла) предметной области. Это, например, модели типа «сущность—связь» (ER—модели — Entity Relationship model), отображающие семантику предметной области в виде ER—диаграмм;
— функциональные модели, дающие представление о функциях автоматизируемого предприятия, о распределении ответственности за их выполнение. Результаты использования функциональных моделей могут быть представлены в виде диаграмм бизнес—функций, диаграмм потоков данных;
—объектно—ориентированные модели. Эти модели расширяет определение класса объектов (сущности) предметной области с целью включения в определение не только свойств, описывающих состояние объекта, но и действий, которые с ним связаны, т.е. его поведение. Это, например, модели, основанные на использовании языка UML (Unified Modeling Language — унифицированного языка моделирования). Описание предметной области получают в виде различных диаграмм — диаграмм вариантов использования, диаграмм деятельности, диаграмм классов.
В настоящее время для проектирования БД, получения концептуальной инфологической модели предметной области, широко используются семантические модели «сущность—связь».
2. Модели на основе физических записей. Такие модели позволяют описывать логическую структуру БД в виде записей, фиксированного формата. Каждый тип записи определяет фиксированное количество полей, каждое из которых имеет фиксированную длину. Существует три основных типа логических моделей данных на основе записей:
— иерархическая (hierarchical data model);
— сетевая (network data model);
— реляционная (relational data model).
3. Физические модели данных. Модель содержит всю информацию, необходимую для реализации конкретной БД в среде выбранной (целевой) СУБД. В физической модели в виде описания содержится информация обо всех объектах БД. В описании объектов БД определяется физический формат данных, реализуются ограничения предметной области, бизнес—логика автоматизируемого предприятия, уровни доступа пользователей. Описание создается на языке определения данных (ЯОД) выбранной (целевой) СУБД. В состав ЯОД входят операторы, позволяющие создать или удалить объект БД, модифицировать его структуру. Физическая модель данных не затрагивает вопросы физического размещения данных на машинных носителях, в настоящее время это максимально реализуется средствами СУБД.
Модели первых двух групп используются для формирования концептуального уровня архитектуры БД, третьей – для описания БД на внутреннем уровне.
Модель данных, полученная в результате проектирования, должна представлять автоматизируемое предприятие в таком виде, который позволит проектировщикам и пользователям БД обмениваться конкретными недвусмысленными мнениями.

Читать еще:  Itunes ошибка 14

Оптимальная модель данных, полученная в результате проектирования, должна удовлетворять следующим критериям:
— обладать структурной достоверностью – способы определения информации в модели данных должны соответствовать организации информации на рассматриваемом предприятии;
— быть относительно простотой, легко понимаемой, как профессионалами в области разработки БД, так и обычными пользователями;
— обладать выразительностью — представлять отличия между разными типами данных, связями и ограничениями;
— обладать отсутствием избыточности, любая часть данных должна быть представлена только один раз;
— обладать возможностью совместного использования, не принадлежать к какому—то особому приложению или технологии;
— быть целостной, согласованной со способами использования и управления информацией внутри предприятия;
— обладать расширяемостью, эволюционировать с целью включения новых требований с минимальным влиянием на уже существующих пользователей;
— иметь возможность представления в виде диаграмм.

В таблице 1 представлены модель, которые будем использовать при проектировании базы данных

Таблица 1 — Модели данных

Модель данных, как инструмент, используемый для формирования схемы БД

Архитектура базы данных: понятие, определение, уровни

Как называется совокупность основных структурных, функциональных компонентов различных БД, СУБД (систем управления базами данных)? Этот комплекс в информационной науке принято называть архитектурой базы данных, СУБД. Предлагаем вам досконально разобрать это понятие, типы подобных комплексов, их трехуровневое разбиение.

Что это?

Архитектура базы данных — комплекс структурных компонентов БД, а также средств, обеспечивающих их взаимодействие как друг с другом, так и с конечным пользователем, системным персоналом.

Данное определение отражает одну из важнейших функций хранилищ информации — обеспечение возможности абстракции сведений БД. Она и формирует сложившийся в наши дни подход к архитектуре данных.

Отсюда возникает новый вопрос: в чем суть, предназначение абстракции данных? Предоставляемые системой, они (абстракции) будут основным средством поддержки независимости ведения хранилищ информации (другими словами, БД) разными группами конечных пользователей. По-иному это называется независимостью данных системы.

Виды БД

Архитектура систем управления базами данных будет различной в зависимости от разновидности последних. На сегодня выделяется два вида БД:

С особенностями каждой из разновидностей мы предлагаем читателю ознакомиться далее.

Централизованные базы данных

Главное отличие этих БД: они хранятся в памяти одной вычислительной системы. Но если база, в свою очередь, будет компонентом сетей ЭВМ, то становится возможным распределенный доступ к базам данных. То есть БД будет открытой для пользователей электронно-вычислительных машин, подключенных к данной сети. Подобное использование характерно для локальных систем ЭВМ, создаваемых на базе организаций, компаний.

Распределенные базы данных

Что важно знать об архитектуре распределенных баз данных? Такие БД состоят из нескольких частей, хранящихся в различных ЭВМ одной сети. Возможно, информация тут будет дублироваться, пересекаться. Что удобно, пользователю распределенной базы данных не нужно знать, каким образом элементы хранилища информации размещены в узлах подобной сети. Чаще всего он воспринимает этот комплекс сведений как единое целое.

Как осуществляется работа с подобной БД? С помощью системы управления распределенными базами данных (СУРБД). Ее системный справочник будет описывать информацию, содержащуюся в хранилище данных, основы ее размещения в сети. В свою очередь, сам справочник может быть декомпозирован, размещен в различных узлах общей сети.

Составные части распределенной БД размещаются на отдельных подключенных к ней ЭВМ. Ими управляют уже собственные (локальные) СУБД электронно-вычислительных устройств. Что важно отметить, подобные локальные системы управления хранилищами информации необязательно должны быть одинаковыми в различных узлах общей сети. Однако объединение таковых различных локальных баз данных в единую систему — весьма сложная научно-техническая задача. Для ее успешного решения потребовался целый комплекс экспериментальных мероприятий, теоретических разработок.

Типы БД по способу доступа к ним

Архитектура базы данных также будет различаться по способу доступа к находящейся в хранилище информации:

  • Доступ локальный.
  • Доступ удаленный (сетевой).

Последний тип доступа предполагает разделение архитектуры подобных систем еще на две вариации:

Снова предлагаем читателю разобраться с представленными разновидностями подробнее.

БД «файл-сервер»

Подобная архитектура комплексов баз данных предполагает выделение одного из устройств сети ЭВМ в качестве центрального. Оно будет считаться сервером файлов. На главной машине хранится совместно используемая централизованная база данных. Другие же устройства сети выступают рабочими станциями, которые поддерживают пользовательский доступ к основной БД.

В системе «файл-сервер» каждый пользователь имеет возможность запускать приложение, находящееся на главной машине. Притом на его устройстве будет открываться только копия данной программы.

По пользовательским запросам файлы центральной базы данных (находящейся на сервере) передаются на компьютеры — рабочие станции. Там и происходит обработка информации. У пользователей, работающих с общей БД, на компьютерах появляется локальная ее копия. Последняя периодически обновляется по мере наполнения основного хранилища на сервере свежей информацией.

Подобная архитектура систем БД более всего характерна для сетей, к которым подключено небольшое число пользователей. Для ее реализации типично использование персональных СУБД (к примеру, Paradox, DBase). Недостатком архитектуры является критически низкая производительность системы при одновременном доступе нескольких пользователей к одним и тем же данным.

БД «клиент-сервер»

Здесь также предполагается наличие машины в сети, которая будет являться главной. Однако архитектура базы данных «клиент-сервер» имеет и собственную особенность. Главный компьютер не только хранит централизованную БД, но и обеспечивает основную часть обработки требуемых пользователю данных.

Технология разделяет систему на две части: серверную и клиентскую. Последняя будет обеспечивать интерактивный сервис, а серверная — разделение информации, управление данными, безопасность и администрирование.

Что предполагает архитектура клиент-серверных баз данных? Клиентское приложение здесь оформляет и отправляет запрос удаленному компьютеру-серверу, где расположено централизованное хранилище информации. Он (запрос) составлен на специальном языке SQL — стандарте доступа к серверу при использовании реляционных БД.

После получения запроса удаленный сервер перенаправляет его SQL-серверу. Так называется программа, ответственная за управление удаленной базой данных. Она обеспечивает выполнение запроса, предоставляет клиенту требуемые результаты по нему.

Таким образом, вся обработка запросов здесь будет проходить на удаленном сервере. Чтобы реализовать подобную архитектуру, необходимо задействовать многоуровневые СУБД. Второе их название — промышленные. Такие СУБД способны организовать масштабную инфосистему, состоящую из большого числа пользователей.

Три уровня архитектуры БД

Архитектура баз данных подразделяется на три основных уровня — три степени описания элементов БД:

  • Внешний. На данном уровне информация воспринимается пользователями.
  • Внутренний. На этом уровне информация воспринимается операционными системами, СУБД (системами управления базами данных).
  • Концептуальный. Здесь осуществляется отображение внешнего уровня архитектуры системы баз данных на внутренний, обеспечение необходимой их независимости друг от друга.

Предлагаем читателю более подробно познакомиться с каждой из вышепредставленных степеней.

Внешний уровень

Внешний уровень архитектуры систем баз данных — это предоставление информации с позиции людей-пользователей.

Что из этого следует? Уровень описывает пользовательскую часть баз данных (относящихся к каждому пользователю). В свою очередь, она будет состоять из нескольких внешних представлений хранилищ информации, БД.

Что удобно, каждый пользователь здесь имеет дело с таким образом «реального мира», который более всего адаптирован под него. Внешнее представление будет содержать в себе только те сущности, связи и атрибуты, что интересны и полезны конкретному «юзеру».

Не стоит полагать, что ненужные для пользователя атрибуты, сущности и связи не существуют в базе данных. Они есть, но «юзер» чаще всего не подозревает об их существовании.

Если обратиться к терминологии ANSI/SPARC (Американского национального института стандартов), то представление каждого отдельного пользователя здесь будет называться внешним. В него будет входить содержимое БД — такое, каким его видит конкретный «юзер». Каждое такое внешнее представление определяется посредством внешней системы. Она же состоит из определения записи каждого типа, присутствующего во внешнем представлении.

Концептуальный уровень

Продолжаем разбирать архитектуру сервера, баз данных. Следующий ее уровень — концептуальный. Он включает в себя обобщающее представление о хранилище информации. Будет описывать, какие именно сведения хранятся в базе данных, а также каковы связи, их объединяющие.

С точки зрения администратора, хранилище содержит в себе логическую структуру БД. Данный уровень архитектуры базы данных — это фактически полное представление требований информации со стороны компании, предприятия, которое не будет зависеть от любых соображений относительно способа, методики ее (информации) хранения.

Элементы концептуального уровня

Перечислим компоненты, представленных на концептуальном уровне архитектуры:

  • Совокупность сущностей, их атрибутов, связей между ними.
  • Ограничения, что могут быть наложены на данные.
  • Семантическая информация о сведениях в БД (связанная с их смыслом и значением).
  • Информация по мерам обеспечения безопасности хранения данных, общей поддержки их целостности.

Концептуальный уровень призван поддерживать каждое из внешних представлений. Любая доступная пользователю информация из БД должна содержаться (или может быть вычислена) именно на данном уровне. Однако следует помнить, что информация о методах хранения данных в системе здесь не хранится.

Внутренний уровень

И последняя ступень трехуровневой архитектуры базы данных. Тут находится физическое представление в компьютере БД. Что это значит? Уровень предназначен для описания физической реализации базы данных. Кроме того, с его помощью достигается оптимальная производительность, обеспечивается экономное использование дискового пространства компьютерной системы.

Содержит в себе описание структур данных, организации конкретных файлов, которые используются для реализации хранения информации на дисковых пространствах, запоминающих устройствах. Здесь, на внутреннем уровне, СУБД взаимодействует с методами, способами доступа операционных систем, вспомогательным функционалом хранения и извлечения записей сведений. Цель всего перечисленного: размещать информацию на запоминающих устройствах, извлекать данные, создавать индексы и проч.

Ниже данного будет находиться физический уровень. Его контролирует уже операционная система, однако все же под контролем СУБД.

Элементы внутреннего уровня

Внутренний уровень архитектуры приложения, базы данных хранит в себе следующую информацию:

  • О распределении дискового пространства для сохранения индексов и сведений.
  • Подробное описание сохранения записи (где указываются реальные объемы сохраняемых данных).
  • Информация о размещении записей.
  • Сведения о сжатии данных, избранных методик их шифрования.

Вы познакомились с распространенными типами, видами архитектур систем баз данных. Также мы представили уровни архитектуры СУБД — внешний, внутренний и концептуальный, их характеристики и элементы.

Ссылка на основную публикацию
Adblock
detector