Магистрально модульный принцип архитектуры современных
Магистрально – модульный принцип построения ЭВМ
Под архитектурой компьютера понимается его логическая организация, структура, ресурсы, т. е. средства вычислительной системы. Архитектура современных ПК основана на магистрально-модульном принципе.
Модульный принцип позволяет потребителю самому подобрать нужную ему конфигурацию компьютера и производить при необходимости его модернизацию. Модульная организация системы опирается на магистральный (шинный) принцип обмена информации. Магистраль или системная шина — это набор электронных линий, связывающих воедино по адресации памяти, передачи данных и служебных сигналов процессор, память и периферийные устройства.
Обмен информацией между отдельными устройствами ЭВМ производится по трем многоразрядным шинам, соединяющим все модули, — шине данных, шине адресов и шине управления.
Подключение отдельных модулей компьютера к магистрали на физическом уровне осуществляется с помощью контроллеров, а на программном обеспечивается драйверами. Контроллер принимает сигнал от процессора и дешифрует его, чтобы соответствующее устройство смогло принять этот сигнал и отреагировать на него. За реакцию устройства процессор не отвечает — это функция контроллера. Поэтому внешние устройства ЭВМ заменяемы, и набор таких модулей произволен.
Разрядность шины данных задается разрядностью процессора, т. е. количеством двоичных разрядов, которые процессор обрабатывает за один такт.
Данные по шине данных могут передаваться как от процессора к какому-либо устройству, так и в обратную сторону, т. е. шина данных является двунаправленной. К основным режимам работы процессора с использованием шины передачи данных можно отнести следующие: запись/чтение данных из оперативной памяти и из внешних запоминающих устройств, чтение данных с устройств ввода, пересылка данных на устройства вывода.
Выбор абонента по обмену данными производит процессор, который формирует код адреса данного устройства, а для ОЗУ — код адреса ячейки памяти. Код адреса передается по адресной шине, причем сигналы передаются в одном направлении, от процессора к устройствам, т. е. эта шина является однонаправленной.
По шине управления передаются сигналы, определяющие характер обмена информацией, и сигналы, синхронизирующие взаимодействие устройств, участвующих в обмене информацией.
Внешние устройства к шинам подключаются посредством интерфейса. Под интерфейсом понимают совокупность различных характеристик какого-либо переферийного устройства ПК, определяющих организацию обмена информацией между ним и центральным процессором. В случае несовместимости интерфейсов (например, интерфейс системной шины и интерфейс винчестера) используют контроллеры.
Чтобы устройства, входящие в состав компьютера, могли взаимодействовать с центральным процессором, в IBM-совместимых компьютерах предусмотрена система прерываний (Interrupts). Система прерываний позволяет компьютеру приостановить текущее действие и переключиться на другие в ответ на поступивший запрос, например, на нажатие клавиши на клавиатуре. Ведь с одной стороны, желательно, чтобы компьютер был занят возложенной на него работой, а с другой — необходима его мгновенная реакция на любой требующий внимания запрос. Прерывания обеспечивают немедленную реакцию системы.
Прогресс компьютерных технологий идет семимильными шагами. Каждый год появляются новые процессоры, платы, накопители и прочие периферийные устройства. Рост потенциальных возможностей ПК и появление новых более производительных компонентов неизбежно вызывает желание модернизировать свой компьютер. Однако нельзя в полной мере оценить новые достижения компьютерной технологии без сравнения их с существующими стандартами.
Разработка нового в области ПК всегда базируется на старых стандартах и принципах. Поэтому знание их является основополагающим фактором для (или против) выбора новой системы.
В состав ЭВМ входят следующие компоненты:
· центральный процессор (CPU);
· оперативная память (memory);
· устройства хранения информации (storagedevices);
Магистрально-модульный принцип построения компьютера: основные элементы и их назначение
Что такое магистрально-модульный принцип построения компьютера? На чем он базируется? Каково техническое назначение такого принципа и зачем он вообще нужен в устройствах? На эти и другие вопросы мы постараемся ответить в ходе данной статьи.
Что такое магистраль в компьютере?
Магистраль иначе именуется специалистами как системная шина. Соответственно, магистрально-модульный принцип построения компьютера тогда будет базироваться на существовании некоторой шины данных, по которой они, собственно, и будут передаваться. На самом деле мы недалеки от правды. Магистраль компьютера – сложное техническое устройство, которое включает в себя три шины многоразрядного типа. Конкретнее о них будет сказано далее в статье, сейчас же расскажем в общих чертах, чтобы сформировать в понимании некоторую структуру и ассоциации, которые, быть может, кому-то в будущем послужат помощью.
Итак, магистраль компьютера включает в себя шину данных, а также шину адреса и управления. Что представляют собой эти шины? С точки зрения техники вышеназванные шины представляют собой систему линий многопроводного характера. Если говорить по существу, то именно к магистрали крепятся такие устройства, как планки процессора и оперативной памяти. Есть такое понятие, как устройства ввода и вывода. Это периферия, которой мы так привыкли пользоваться: клавиатуры, мониторы, мыши. Все это также подключается к магистрали. Магистрально-модульный принцип построения компьютера предполагает также подключение к системной шине устройств, хранящих информацию. Все эти устройства между собой обмениваются некоторым потоком информации, передающимся на любимом нами двоичном коде – так называемом “машинном языке”.
Что такое шина данных?
Шина данных имеет в компьютере достаточно важное значение, которое кроется, прежде всего, в передаче информационного потока. Он следует от некоторого одного устройства к другому. Вот самый простой пример: информацией о задаче обмениваются процессор и оперативная память.
Стоит параллельно отметить тот факт, что именно разрядность процессора будет оказывать определяющее влияние на разрядность шины данных. А что же тогда представляет собой разрядность процессора? На самом деле ничего сложного здесь нет. Разрядность процессора есть не что иное, как количество тех двоичных разрядов, которые одновременно процессором и обрабатываются, и передаются.
Зачем нужна шина адреса?
Магистрально-модульный принцип, как мы выяснили ранее, предполагает наличие трех шин. Назначение первой из них мы уже разобрали. А с вопросом о том, зачем нужна шина адреса, разберемся сейчас.
Итак, представьте себе такую вещь: пусть каждое устройство компьютера (ну или же можно взять ячейку планки оперативной памяти) имеет определенный адрес. К этим устройствам, к слову, процессор и передает данные. Чтобы адрес передать, как раз и используют адресную шину. На этом этапе следует сделать одно достаточно важное замечание: адрес передается исключительно в одностороннем порядке. Инициатором-источником сигнала служит центральный процессор, а вот роль приемников в этой своеобразной системе играют устройства компьютера. Это, как говорилось ранее, и оперативная память, и периферийный устройства, и так далее.
И вот когда разговор заходит уже о том, с чем связана разрядность шины адреса, можно выяснить одну очень интересную вещь. На самом деле разрядность данной шины будет оказывать влияние на объем так называемой адресуемой памяти. Его специалисты также называют адресным пространством. Причем будет оказываться даже не влияние, а полное определение. Иначе говоря, количество ячеек, приходящихся на оперативную память, и является адресуемой памятью. Она рассчитывается согласно следующей формуле: X = 2^y. Здесь Y – разрядность шины.
Какой смысл имеет наличие шины управления?
Шина управления также занимается передачей. Только не информационных потоков, а сигналов. Стоит сказать, что эти сигналы, по сути дела, и определяют, какой характер имеет обмен информацией, которая “гуляет” по всей магистрали. Проще говоря, сигналы говорят центральному процессору о том, какую операцию необходимо производить в настоящий момент времени. Это может быть как считывание данных из памяти, так и наоборот – запись новых данных. Кроме того, шина управления помогает синхронизировать дерево процессов, способствующих обмену информацией между теми или другими отдельными устройствами.
Как устроен центральный процессор?
Магистрально-модульный принцип построения ПК предполагает, что существует не только архитектура, составляемая из трех шин. Материнская плата, безусловно, объединяет разрозненные компьютерные детали в единое целое, благодаря чему мы на выходе получаем стабильную работу компьютера или ноутбука, другого устройства подобного рода. Но именно центральный процессор задает единую частоту, на которой будет работать вся система. Не будь его – и каждый отдельный элемент, каждая отдельная деталь работала бы на своей частоте и со своим интервалом времени. И что тогда? Тогда быстродействие компьютера было бы снижено в огромное количество раз, а его работа оказалась бы просто бессмысленной.
Центральный процессор представляет собой микросхему (или же электронный блок). Он занимается исполнением машинного кода, на котором пишутся те или иные программы. Если угодно, то центральный процессор исполняет инструкции, которые определяют работу компьютера как одного целого механизма. ЦПУ можно по праву назвать самым главным элементом аппаратного компьютерного обеспечения. Он также имеет место и в случае программирующих логических контроллеров. Иногда ЦП называют также микропроцессором.
Проводя аналогию с человеческим организмом, можно сказать, что центральный процессор есть не что иное, как “мозг”. Только он может выдать разрешение на выполнение той или иной программы. Он, наряду с материнской платой, командует тем, что происходит в компьютере, какие элементы подключаются к выполнению определенного задания, а какие – отключаются или перенаправляются на решение других задач.
Заключение
Итак, что мы узнали в ходе данной статьи? Магистрально-модульный принцип построения компьютера предполагает наличие системы из трех шин, каждая из которых имеет свои цели, а также центрального управляющего устройства (именуемого процессором) и остальных элементов. Шины передают сигналы, транслируемые от “центра” к периферийным устройствам, а также сигналами показывают, какой характер имеет эта информация.
Магистрально-модульный принцип архитектуры компьютера
Магистрально-модульный принцип архитектуры компьютера — это возможность для пользователя самостоятельно выбирать комплектацию компьютера и впоследствии её модернизировать.
Магистрально-модульный принцип
В основе архитектурного построения сегодняшних электронных вычислительных машин положены магистрально-модульные принципы. Модульность конструкции даёт возможность пользователям самим определять комплектацию и, как следствие, конфигурацию своих компьютеров, а в дальнейшем и модернизировать их, по мере необходимости.
Главной опорой модульности можно считать магистральную методику передачи информационных данных между модулями и устройствами. Магистраль, она же системная шина, состоит из трёх многоразрядных шин:
- Шина данных.
- Шина адреса.
- Шина управления.
По шине данных выполняется обмен данным между модулями. К примеру, осуществляется выборка данных из оперативной памяти и передача их процессору, который их обрабатывает и направляет обратно в оперативную память или на модули вывода. Возможна передача данных между модулями в разных направлениях. Число разрядов шины данных равно разрядности процессора, то есть числу двоичных разрядов, обрабатываемых процессором за один тактовый период.
Попробуй обратиться за помощью к преподавателям
Шина адреса служит для определения процессором модуля или ячейки памяти, с которой будет выполняться обмен информационными данным. Всем модулям и ячейкам памяти присвоены свои оригинальные адреса. Код адреса пересылается по шине адреса, при этом посылаются эти коды только в направлении от процессора к другим устройствам. Число разрядов адресной шины определяет формат адресного пространства процессора. При 32-х разрядном процессоре его адресное пространство составит четыре Гбайта.
Шина управления служит для передачи управляющих сигналов, определяющих какой тип операции следует исполнить (запись или считывание данных, синхронизацию обмена и так далее).
Компоненты компьютера
Процессор является основным вычислительным компонентом. Главным его параметром является тактовая частота, то есть число выполняемых операций за одну секунду. Для сегодняшних компьютерных процессоров она измеряется в гигагерцах (ГГц). Важным параметром является также производительность процессора, которая зависит от нескольких характеристик, таких как тактовая частота, разрядность и архитектурное построение процессора. Производительность можно определить при тестировании компьютера по быстроте выполнения некоторых операций.
Задай вопрос специалистам и получи
ответ уже через 15 минут!
Оперативная память является составной частью электронной памяти. Существуют несколько типов электронной памяти, которые используется почти в любой вычислительной системе:
- Оперативная или основная память (Main Memory). Этот тип памяти применяется для информационных обменов процессора с внешней памятью (например, ПЗУ) и устройствами ввода-вывода. Данный вид памяти обозначается как RAM ((Random Access Memory, что в переводе означает память с возможностью произвольной выборки). В России эту память принято называть ОЗУ (оперативное запоминающее устройство).
- Память КЭШ (Cache Memory) или сверхоперативная память (СОЗУ). Она выступает как буфер обмена между центральным процессором и оперативной памятью. КЭШ-память сохраняет скопированные массивы данных тех адресов оперативной памяти, с которыми происходил последний обмен, и есть вероятность, что следующий обмен данными с этой же областью адресов будет выполнен более быстро.
- Полупостоянная память. Этот тип памяти применяется для запоминания информационных данных о структуре вычислительной системы, и, кроме того, сохранения времени и даты системы. Для гарантированного сохранения информации применяется питание от аккумулятора.
Системный блок является основной частью компьютера к которой подсоединяются все другие модули и устройства (периферийные или внешние устройства). В состав системного блока входят все главные электронные элементы компьютера.
Персональный компьютер выполняется на базе сверхбольших интегральных микросхем, и практически все они располагаются в системном блоке на отдельных платах. Главной платой системного блока можно считать системную или материнскую плату. На ней расположены центральный процессор, сопроцессор, оперативная память и ряд разъёмов для установки контроллеров внешних устройств или соединения с ними. То есть она представляет собой комплект разных модулей, которые обеспечивают функционирование компьютера.
Блок питания обеспечивает преобразование переменного напряжения электрической сети в несколько постоянных напряжений разной величины и полярности, которые необходимы для работы материнской платы и остальных устройств внутри системного блока. Для охлаждения компонентов системного блока и исключения перегрева, используется регулируемый вентилятор.
Системная шина или магистраль, находящаяся в системном блоке, представляет собой набор электрических соединений для связи процессора с памятью и внешними устройствами.
Клавиатура компьютера предназначается для ввода информационных данных в память компьютера посредством нажатия пользователем нужных клавиш. Обычная клавиатура, как правило, состоит из ста клавиш.
Мышь манипуляторного типа представляет собой устройство, позволяющее синхронизировать движение корпуса мыши по плоскости (коврику) с движением указателя на экране дисплея. Ввод данных выполняется расположением курсора в нужной экранной позиции и нажатием одной из клавиш на корпусе мыши.
Под монитором понимается устройство, которое обеспечивает диалог пользователя с компьютером посредством отображения на экране дисплея информационных данных в виде символов или графики. Графический режим дисплея представляет собой набор точек (пикселей), которые получаются при разбиении экранной поверхности на строки и столбцы. Число экранных пикселей принято называть разрешением дисплея в текущем режиме работы.
Так и не нашли ответ
на свой вопрос?
Просто напиши с чем тебе
нужна помощь
«Магистрально-модульный принцип архитектуры ЭВМ
Как организовать дистанционное обучение во время карантина?
Помогает проект «Инфоурок»
Специальность 34.02.01 «Сестринское дело»
Архитектура ЭВМ — это общее описание структуры и функций компьютера на уровне, достаточном для понимания принципов работы и системы команд ЭВМ. Архитектура не включает в себя описание деталей технического и физического устройства компьютера.
К архитектуре относятся следующие принципы построения ЭВМ:
структура памяти ЭВМ;
способы доступа к памяти и внешним устройствам;
возможность изменения конфигурации;
Основы учения об архитектуре вычислительных машин были заложены Джон фон Нейманом . Совокупность этих принципов породила классическую (фон-неймановскую) архитектуру ЭВМ.
Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, представленную на рисунке:
Положения фон Неймана:
Компьютер состоит из нескольких основных устройств (арифметико-логическое устройство, управляющее устройство, память, внешняя память, устройства ввода и вывода)
Арифметико-логическое устройство – выполняет логические и арифметические действия, необходимые для переработки информации, хранящейся в памяти
Управляющее устройство – обеспечивает управление и контроль всех устройств компьютера (управляющие сигналы указаны пунктирными стрелками)
Данные, которые хранятся в запоминающем устройстве, представлены в двоичной форме
Программа, которая задает работу компьютера, и данные хранятся в одном и том же запоминающем устройстве
Для ввода и вывода информации используются устройства ввода и вывода
Один из важнейших принципов – принцип хранимой программы – требует, чтобы программа закладывалась в память машины так же, как в нее закладывается исходная информация.
Арифметико-логическое устройство и устройство управления в современных компьютерах образуют процессор ЭВМ. Процессор, который состоит из одной или нескольких больших интегральных схем называется микропроцессором или микропроцессорным комплектом.
Процессор – функциональная часть ЭВМ, выполняющая основные операции по обработке данных и управлению работой других блоков. Процессор является преобразователем информации, поступающей из памяти и внешних устройств.
Запоминающие устройства обеспечивают хранение исходных и промежуточных данных, результатов вычислений, а также программ. Они включают: оперативные (ОЗУ), сверхоперативные СОЗУ), постоянные (ПЗУ) и внешние (ВЗУ) запоминающие устройства.
Оперативные ЗУ хранят информацию, с которой компьютер работает непосредственно в данное время (резидентная часть операционной системы, прикладная программа, обрабатываемые данные). В СОЗУ хранится наиболее часто используемые процессором данные. Только та информация, которая хранится в СОЗУ и ОЗУ, непосредственно доступна процессору.
Внешние запоминающие устройства (накопители на магнитных дисках, например, жесткий диск или винчестер) с емкостью намного больше, чем ОЗУ, но с существенно более медленным доступом, используются для длительного хранения больших объемов информации. Например, операционная система (ОС) хранится на жестком диске, но при запуске компьютера резидентная часть ОС загружается в ОЗУ и находится там до завершения сеанса работы ПК.
ПЗУ (постоянные запоминающие устройства) и ППЗУ (перепрограммируемые постоянные запоминающие устройства) предназначены для постоянного хранения информации, которая записывается туда при ее изготовлении, например, ППЗУ для BIOS.
В качестве устройства ввода информации служит, например, клавиатура. В качестве устройства вывода – дисплей, принтер и т.д.
В построенной по схеме фон Неймана ЭВМ происходит последовательное считывание команд из памяти и их выполнение. Номер (адрес) очередной ячейки памяти, из которой будет извлечена следующая команда программы, указывается специальным устройством – счетчиком команд в устройстве управления.
Программа – набор команд, понятных компьютеру, выполнение которых позволяет решить конкретную задачу на конечное число шагов.
Решение задачи на ЭВМ в соответствии с принципами Фон-Неймана происходит без вмешательства человека, что осуществляется программой, хранящейся в памяти ЭВМ. Решение задач выполняется о следующей схеме: в память машины с помощью устройства ввода заносится программа и исходные данные по соответствующим адресам, что соответствует принципам адресности, т.е. все пространство памяти состоит из пронумерованных ячеек, и по команде содержимое любой ячейки может быть направлено в АЛУ.
Каждая команда составляет двоичное число – машинный код , содержащий следующую информацию:
Трехадресная структура
используется в вычислительных машинах, построенных так, что после выполнения команды по адресу K (команда занимает L ячеек памяти) выполняется команда по адресу K+L. Такой порядок выборки команд называется естественным . Он нарушается только специальными командами передачи управления. При естественном порядке выборки адрес следующей команды формируется в устройстве, называемом счетчик адреса команд. В этом случае команда становится трехадресной.
Четырехадресная структура
содержит наиболее полную информацию о выполняемой операции, включает поле кода операции и четыре адреса для указания ячеек памяти двух операндов, ячейки результата операции, и ячейки, содержащей адрес следующей команды. Такой порядок выборки команд называется принудительным . Он использовался в первых моделях вычислительных машин, имеющих небольшое число команд и очень незначительный объем ОП, поскольку длина такой команды зависит от разрядности адресов операндов и результата.
С развитием компьютерной техники, изменения коснулись взаимодействия электронной части ЭВМ., а именно процессора и механических устройств ввода-вывода информации, медленная работа которых снижала быстродействие процессора. Были разработаны специальные электронные схемы управления внешними устройствами – контроллеры , которые имели собственную программу работы с внешними устройствами, что освобождает центральный процессор от управления периферийными устройствами.
Кроме того, изменилась внутренняя структура ЭВМ. Одно из достижений фирмы IBM состоит в использовании магистрального принципа построения ЭВМ.
Информационная связь между устройствами компьютера осуществляется через информационную магистраль (другое название — общая шина). Магистраль — это кабель, состоящий из множества проводов.
По одной группе проводов ( шина данных ) передается обрабатываемая информация, по другой ( шина адреса ) — адреса памяти или внешних устройств, к которым обращается процессор. Есть еще третья часть магистрали — шина управления , по ней передаются управляющие сигналы (например, сигнал готовности устройства к работе, сигнал к началу работы устройства и др.).
Количество одновременно передаваемых по шине бит называется разрядностью шины .
Всякая информация, передаваемая от процессора к другим устройствам по шине данных, сопровождается адресом, передаваемым по адресной шине (как письмо сопровождается адресом на конверте). Это может быть адрес ячейки в оперативной памяти или адрес (номер) периферийного устройства.
Магистральная структура позволяет через контроллер подключить к компьютеру различные внешние устройства в зависимости от решаемой задачи и скомпоновать конфигурацию машины, необходимую пользователю.
По мере развития ЭВМ улучшались их характеристики:
Скорость выполнения операций или быстродействие. Часто в качестве характеристики быстродействия используют понятие производительности – т.е. объем задач, решаемых ЭВМ в единицу времени.
Разрядность машины и шин интерфейса (т.е. максимальное количество разрядов, одновременно хранящихся или передающихся по шинам интерфейса. Чем больше разрядов, тем выше скорость обработки данных)
Емкость запоминающих устройств (определяет возможности использования различных программных пакетов и объемов обрабатываемой информации)
Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между устройствами.
Т.е. каждое устройство конструктивно оформляется в виде отдельного блока (модуля), который легко подключается к общей схеме через один или несколько разъемов.
Модульный принцип позволяет комплектовать нужную конфигурацию компьютера и производить при необходимости модернизацию компьютера. Т.е. мы без труда или каких-либо усилий можем заменить устаревшее оборудование на более новое. Этому способствуют типовые размеры устройств (все CD и DVD дисководы имеют одинаковые физические параметры), универсальные типовые информационные разъемы и разъемы питания, что обуславливает универсальность этим разъемам (к примеру USB-разъем применяется и в телефонах, планшетах, фотоаппаратах, ПК, телевизорах).
Возможно увеличение внутренней памяти, замена микропроцессора на более совершенный. Аппаратное подключение периферийного устройства к магистрали осуществляется через специальный блок — контроллер (другое название — адаптер). Программное управление работой устройства производится через программу —драйвер, которая является компонентой операционной системы. (Драйверы устройств — это специальные программы, которые дополняют систему ввода-вывода DOS и обеспечивают обслуживание новых или нестандартное использование имеющихся устройств. Драйверы загружаются в память компьютера при загрузке операционной системы, их имена указываются в специальном файле (config.sys). Такая схема облегчает добавление новых устройств и позволяет делать это, не затрагивая системные файлы DOS). Следовательно, для подключения нового периферийного устройства к компьютеру необходимо использовать соответствующий контроллер и установить в ОС подходящий драйвер.
Подключение отдельных модулей компьютера к магистрали на физическом уровне осуществляется с помощью контроллеров, адаптеров устройств (видеоадаптер, контроллер жестких дисков и т. д.), а на программном уровне обеспечивается загрузкой в оперативную память драйверов устройств, которые обычно входят в состав операционной системы.
Компания Razer продемонстрировала концепт модульного персонального компьютера под названием Project Christine.
Данный концепт не содержит кабелей и предлагает инновационный дизайн, который помогает с лёгкостью устанавливать и менять компьютерные комплектующие.
Все комплектующие заключены в специальные модули, которые в свою очередь подключаются к центральной части ПК по типу конструктора.
Все модульные части полностью герметичны, автономны и охлаждаются при помощи активной системы жидкостного охлаждения, установленных в каждом модуле.
Помимо основных комплектующих можно будет установить сенсорную панель управления.
Магистрально-модульный принцип построения ПК
На прошлых уроках вы познакомились с назначением и характеристиками основных устройств компьютера. Очевидно, что все эти устройства не могут работать по отдельности, а только в составе всего компьютера. Поэтому для понимания того, как компьютер обрабатывает информацию, необходимо рассмотреть структуру компьютера и основные принципы взаимодействия его устройств.
В соответствии с назначением компьютера как инструмента для обработки информации взаимодействие входящих в него устройств должно быть организованно таким образом, чтобы обеспечить основные этапы обработки информации. (Какие?) Схему устройства компьютера мы рассмотрели на 5 уроке. (Вспоминаем.)
Информация, представленная в цифровой форме и обрабатываемая на компьютере, называется данными.
Последовательность команд, которую выполняет компьютер в процессе обработки данных, называется программой.
Обработка данных на компьютере:
1. Пользователь запускает программу, хранящуюся в долговременной памяти, она загружается в оперативную и начинает выполняться.
2. Выполнение: процессор считывает команды и выполняет их. Необходимые данные загружаются в оперативную память из долговременной памяти или вводятся с помощью устройств ввода.
3. Выходные (полученные) данные записываются процессором в оперативную или долговременную память, а также предоставляются пользователю с помощью устройств вывода информации.
Для обеспечения информационного обмена между различными устройствами должна быть предусмотрена какая-то магистраль для перемещения потоков информации.
Магистраль (системная шина) включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления, которые представляют собой многопроводные линии. К магистрали подключаются процессор и оперативная память, а также периферийные устройства ввода, вывода и хранения информации, которые обмениваются информацией на машинном языке (последовательностями нулей и единиц в форме электрических импульсов).
Шина данных. По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении.
Разрядность шины данных определяется разрядностью процессора, то есть количеством двоичных разрядов, которые могут обрабатываться или передаваться процессором одновременно. Разрядность процессоров постоянно увеличивается по мере развития компьютерной техники.
Шина адреса. Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении — от процессора к оперативной памяти и устройствам (однонаправленная шина).
Разрядность шины адреса определяет объем адресуемой памяти (адресное пространство), то есть количество однобайтовых ячеек оперативной памяти, которые могут иметь уникальные адреса.
Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления показывают, какую операцию — считывание или запись информации из памяти — нужно производить, синхронизируют обмен информацией между устройствами и так далее.
Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Каждая отдельная функция компьютера реализуется одним или несколькими модулями – конструктивно и функционально законченных электронных блоков в стандартном исполнении. Организация структуры компьютера на модульной основе аналогична строительству блочного дома. Основными модулями компьютера являются память и процессор. Процессор – это устройство управляющее работой всех блоков компьютера. Действия процессора определяются командами программы, хранящейся в памяти.
Модульная организация опирается на магистральный (шинный) принцип обмена информацией между устройствами.
Магистрально-модульный принцип имеет ряд достоинств:
1. для работы с внешними устройствами используются те же команды процессора, что и дл работы с памятью.
2. подключение к магистрали дополнительных устройств не требует изменений в уже существующих устройствах, процессоре, памяти.
3. меняя состав модулей можно изменять мощность и назначение компьютера в процессе его эксплуатации.
Принцип открытой архитектуры – правила построения компьютера, в соответствии с которыми каждый новый блок должен быть совместим со старым и легко устанавливаться в том же месте в компьютере.
В компьютере столь же легко можно заменить старые блоки на новые, где бы они ни располагались, в результате чего работа компьютера не только не нарушается, но и становится более производительной. Этот принцип позволяет не выбрасывать, а модернизировать ранее купленный компьютер, легко заменяя в нем устаревшие блоки на более совершенные и удобные, а так же приобретать и устанавливать новые блоки. Причем во всех разъемы для их подключения являются стандартными и не требуют никаких изменений в самой конструкции компьютера.
• Для чего нужна материнская плата?
• Каково назначение системной шины в компьютере?
• С чем можно сравнить системную шину компьютера?
• Для чего необходимо иметь слоты расширения?