Remkomplekty.ru

IT Новости из мира ПК
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Эталонная модель архитектуры открытых систем состоит

Модель взаимодействия открытых систем

Для определения задач, поставленных перед сложным объектом, а также для выделения главных характеристик и параметров, которыми он должен обладать, создаются общие моделитаких объектов. Общая модель вычислительной сети определяет характеристики сети в целом и характеристики и функции входящих в нее основных компонентов.

Архитектура вычислительной сети — описание ее общей модели.

Многообразие производителей вычислительных сетей и сетевых программных продуктов поставило проблему объединения сетей различных архитектур. Для ее решения МОС разработала модель архитектуры открытых систем.

Открытая система — система, взаимодействующая с другими системами в соответствии с принятыми стандартами.

Предложенная модель архитектуры открытых систем служит базой для производителей при разработке совместимого сетевого оборудования. Эта модель не является неким физическим телом, отдельные элементы которого можно осязать. Модель представляет собой самые общие рекомендации для построения стандартов совместимых сетевых программных продуктов. Эти рекомендации должны быть реализованы как в аппаратуре, так и в программных средствах вычислительных сетей.

В настоящее время модель взаимодействия открытых систем (ВОС) является наиболее популярной сетевой архитектурной моделью. Модель рассматривает общие функции, а не специальные решения, поэтому не все реальные сети абсолютно точно ей следуют. Модель взаимодействия открытых систем состоит из семи уровней (рис. 17).

Рис. 17. Эталонная модель архитектуры открытых систем

7-й уровень — прикладной — обеспечивает поддержку прикладных процес­сов конечных пользователей. Этот уровень определяет круг прикладных задач, реализуе­мых в данной вычислительной сети. Он также содержит все необходимые элементы сервиса для прикладных программ пользователя. На прикладной уровень могут быть вынесены некоторые задачи сетевой операционной системы.

6-й уровень —представительный — определяет синтаксис данных в модели, т.е. представление данных. Он гарантирует представление данных в кодах и форма­тах, принятых в данной системе. В некоторых системах этот уровень может быть объединен с прикладным.

5-й уровень —сеансовый — реализует установление и поддержку сеанса связи между двумя абонентами через коммуникационную сеть. Он позволяет производить обмен данными в режиме, определенном прикладной программой, или предоставляет воз­можность выбора режима обмена. Сеансовый уровень поддерживает и завершает сеанс связи.

Три верхних уровня объединяются под общим названием — процесс или прикладной процесс. Эти уровни определяют функциональные особенности вычислительной сети как прикладной системы.

4-й уровень —транспортный —обеспечивает интерфейс между процесса­ми и сетью. Он устанавливает логические каналы между процессами и обеспечивает пере­дачу по этим каналам информационных пакетов, которыми обмениваются процессы. Логические каналы, устанавливаемые транспортным уровнем, называются транспортными каналами.

Пакет — группа байтов, передаваемых абонентами сети друг другу.

3-й уровень — сетевой — определяет интерфейс оконечного оборудования данных пользователя с сетью коммутации пакетов. Он также отвечает за маршрутизацию пакетов в коммуникационной сети и за связь между сетями — реализует межсетевое взаи­модействие.

Примечание. В технике коммуникаций используется термин оконечное оборудование данных. Он определяет любую аппаратуру, подключенную к каналу связи, в системе обработки данных (компьютер, терминал, специальная аппара­тура).

2-й уровень — канальный — уровень звена данных — реализует процесс передачи информации по информационному каналу. Информационный канал — логический канал, он устанавливается между двумя ЭВМ, соединенными физическим каналом, или уровень обеспечивает управление потоком данных в виде кадров, в которые упаковываются информационные пакеты, обнаруживает ошибки передачи и реализует алгоритм восстановления информации в случае обнаружения сбоев или потерь данных.

1-й уровень —физический — выполняет все необходимые процедуры в ее связи. Его основная задача — управление аппаратурой передачи данных и подключенным к ней каналом связи.

При передаче информации от прикладного процесса в сеть происходит ее обработка модели взаимодействия открытых систем. Смысл этой обработки заключаются в том, что каждый уровень добавляет к информации процесса свой заголовок — служебную информацию, которая необходима для адресации сообщений и для некоторых контрольных функций. Канальный уровень кроме заголовка добавляет еще и контрольную последовательность, которая используется для проверки правильности приема сообщения из коммуникационной сети.

Физический уровень заголовка не добавляет. Сообщение, обрамленное заголовками и концевиком, уходит в коммуникационную сеть и поступает на абонентские ЭВМ вычислительных сетей. Каждая абонентская ЭВМ, принявшая сообщение, дешифрирует адреса и определяет, предназначено ли ей данное сообщение.

При этом в абонентской ЭВМ происходит обратный процесс — чтение и отсечение за­головков уровнями модели взаимодействия открытых систем. Каждый уровень реагирует только на свой заголовок. Заголовки верхних уровней нижними уровнями не воспринима­ются и не изменяются — они «прозрачны» для нижних уровней. Так, перемещаясь по уров­ням модели ВОС, информация, наконец, поступает к процессу, которому она была адресована.

Внимание! Каждый уровень модели взаимодействия открытых систем реагирует только на свой заголовок.

В чем же основное достоинство семиуровневой модели ВОС? В процессе развития и совершенствования любой системы возникает потребность изменять ее отдельные компо­ненты. Иногда это вызывает необходимость изменять и другие компоненты, что существен­но усложняет и затрудняет процесс модернизации системы.

Здесь и проявляются преимущества семиуровневой модели. Если между уровнями оп­ределены однозначно интерфейсы, то изменение одного из уровней не влечет за собой не­обходимости внесения изменений в другие уровни. Таким образом, существует относительная независимость уровней друг от друга.

Необходимо сделать и еще одно замечание относительно реализации уровней модели ВОС в реальных вычислительных сетях. Функции, описываемые уровнями модели, должны быть реализованы либо в аппаратуре, либо в виде программ.

Функции физического уровня всегда реализуются в аппаратуре. Это адаптеры, муль­типлексоры передачи данных, сетевые платы и т.д.

Функции остальных уровней реализуются в виде программных модулей — драйверов.

Архитектура вычислительной сети. Эталонные модели взаимодействия систем;

Коды передачи данных

Для передачи информации по каналам связи используются специальные коды. Коды эти стандартизованы и определены рекомендациями ISO (International Organization for Standardization) — Международной организации по стандартизации (МОС) или Международного консультативного комитета по телефонии и телеграфии (МККТТ).

Наиболее распространенным кодом передачи по каналам связи является код ASCII, принятый для обмена информацией практически во всем мире (отечественный аналог — код КОИ-7).

Следует обратить внимание еще на один способ связи между ЭВМ, когда ЭВМ объединены в комплекс с помощью интерфейсного кабеля и с помощью двухпроводной линии связи.

Интерфейсный кабель — это набор проводов, по которым передаются сигналы от одного устройства компьютера к другому. Чтобы обеспечить быстродействие, для каждого сигнала выделен отдельный провод. Сигналы передаются в определенной последовательности и в определенных комбинациях друг с другом.

Для передачи кодовой комбинации используется столько линий, сколько битов эта комбинация содержит. Каждый бит передается по отдельному проводу. Это параллельная передача или передача параллельным кодом. Предпочтение такой передаче отдается при организации локальных МВК, для внутренних связей ЭВМ и для небольших расстояний между абонентами сети. Передача параллельным кодом обеспечивает высокое быстродействие, но требует повышенных затрат на создание физической передающей среды и обладает плохой помехозащищенностью. В вычислительных сетях передача параллельными кодами не используется.

Для передачи кодовой комбинации по двухпроводной линии группа битов передается по одному проводу бит за битом. Это передача информации последовательным кодом. Она, вполне естественно, медленнее, так как требует преобразования данных в параллельный код для дальнейшей обработки в ЭВМ, но экономически более выгодна для передачи сообщений на большие расстояния.

Архитектура вычислительной сети — описание ее общей модели.

Многообразие производителей вычислительных сетей и сетевых программных продуктов поставило проблему объединения сетей различных архитектур. Для ее решения МОС разработала модель архитектуры открытых систем.

Открытая система — система, взаимодействующая с другими системами в соответствии с принятыми стандартами.

Предложенная модель архитектуры открытых систем служит базой для производителей при разработке совместимого сетевого оборудования. Эта модель не является неким физическим телом, отдельные элементы которого можно осязать. Модель представляет собой самые общие рекомендации для построения стандартов совместимых сетевых программных продуктов. Эти рекомендации должны быть реализованы как в аппаратуре, так и в программных средствах вычислительных сетей.

Рис. 8. Эталонная модель архитектуры открытых систем.

В настоящее время модель взаимодействия открытых систем (ВОС) является наиболее популярной сетевой архитектурной моделью. Модель рассматривает общие функции, а не специальные решения, поэтому не все реальные сети абсолютно точно ей следуют. Модель взаимодействия открытых систем состоит из семи уровней (рис. 8).

7-й уровень — прикладной — обеспечивает поддержку прикладных процессов конечных пользователей. Этот уровень определяет круг прикладных задач, реализуемых в данной вычислительной сети. Он также содержит все необходимые элементы сервиса для прикладных программ пользователя. На прикладной уровень могут быть вынесены некоторые задачи сетевой операционной системы.

Читать еще:  Архитектура локальной сети

6-й уровень — представительный — определяет синтаксис данных в модели, т.е. представление данных. Он гарантирует представление данных в кодах и форматах, принятых в данной системе. В некоторых системах этот уровень может быть объединен с прикладным.

5-й уровень — сеансовый — реализует установление и поддержку сеанса связи между двумя абонентами через коммуникационную сеть. Он позволяет производить обмен данными в режиме, определенном прикладной программой, или предоставляет возможность выбора режима обмена. Сеансовый уровень поддерживает и завершает сеанс связи.

Три верхних уровня объединяются под общим названием — процесс или прикладной процесс. Эти уровни определяют функциональные особенности вычислительной сети как прикладной системы.

4-й уровень — транспортный — обеспечивает интерфейс между процессами и сетью. Он устанавливает логические каналы между процессами и обеспечивает передачу по этим каналам информационных пакетов, которыми обмениваются процессы. Логические каналы, устанавливаемые транспортным уровнем, называются транспортными каналами.

Пакет — группа байтов, передаваемых абонентами сети друг другу.

3-й уровень — сетевой — определяет интерфейс оконечного оборудования данных пользователя с сетью коммутации пакетов. Он также отвечает за маршрутизацию пакетов в коммуникационной сети и за связь между сетями — реализует межсетевое взаимодействие.

Примечание. В технике коммуникаций используется термин оконечное оборудование данных. Он определяет любую аппаратуру, подключенную к канал; связи, в системе обработки данных (компьютер, терминал, специальная аппаратура).

2-й уровень — канальный — уровень звена данных — реализует процесс передачи информации по информационному каналу. Информационный канал — логический канал, он устанавливается между двумя ЭВМ, соединенными физическим каналом Канальный уровень обеспечивает управление потоком данных в виде кадров, в которых упаковываются информационные пакеты, обнаруживает ошибки передачи и реализует алгоритм восстановления информации в случае обнаружения сбоев или потерь данных.

1-й уровень — физический — выполняет все необходимые процедуры в канале связи. Его основная задача — управление аппаратурой передачи данных и подключенным к ней каналом связи.

При передаче информации от прикладного процесса в сеть происходит ее обработка уровнями модели взаимодействия открытых систем (рис. 9).

Рис. 9. Обработка сообщений уровнями модели ВОС

Итак, пусть приложение обращается с запросом к прикладному уровню, например к файловой службе. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата. Обычное сообщение состоит из заголовка и поля данных. Заголовок содержит служебную информацию, которую необходимо передать через сеть прикладному уровню машины-адресата, чтобы сообщить ему, какую работу надо выполнить. В нашем случае заголовок, очевидно, должен содержать информацию о месте нахождения файла и о типе операции, которую необходимо над ним выполнить. Поле данных сообщения может быть пустым или содержать какие-либо данные, например те, которые необходимо записать в удаленный файл. Но для того чтобы доставить эту информацию по назначению, предстоит решить еще много задач, ответственность за которые несут нижележащие уровни.

После формирования сообщения прикладной уровень направляет его вниз по стеку представительному уровню. Протокол представительного уровня на основании информации, полученной из заголовка прикладного уровня, выполняет требуемые действия и добавляет к сообщению собственную служебную информацию — заголовок представительного уровня, в котором содержатся указания для протокола представительного уровня машины-адресата. Полученное в результате сообщение передается вниз сеансовому уровню, который в свою очередь добавляет свой заголовок, и т. д. (Некоторые реализации протоколов помещают служебную информацию не только в начале сообщения в виде заголовка, но и в конце, в виде так называемого «концевика».) Наконец, сообщение достигает нижнего, физического уровня, который собственно и передает его по линиям связи машине-адресату. К этому моменту сообщение «обрастает» заголовками всех уровней (рис. 9.1).

Когда сообщение по сети поступает на машину — адресат, оно принимается ее физическим уровнем и последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует и обрабатывает заголовок своего уровня, выполняя соответствующие данному уровню функции, а затем удаляет этот заголовок и передает сообщение вышележащему уровню.

Каждый уровень реагирует только на свой заголовок. Заголовки верхних уровней нижними уровнями не воспринимаются и не изменяются — они «прозрачны » для нижних уровней. Так, перемещаясь по уровням модели ВОС, информация, наконец, поступает к процессу, которому она была адресована.

Достоинство семиуровневой модели ВОС.

В процессе развития и совершенствования любой системы возникает потребность изменять ее отдельные компоненты. Иногда это вызывает необходимость изменять и другие компоненты, что существенно усложняет и затрудняет процесс модернизации системы.

Здесь и проявляются преимущества семиуровневой модели. Если между уровнями определены однозначно интерфейсы, то изменение одного из уровней не влечет за собой необходимости внесения изменений в другие уровни. Таким образом, существует относительная независимость уровней друг от друга.

Необходимо сделать и еще одно замечание относительно реализации уровней модели ВОС в реальных вычислительных сетях. Функции, описываемые уровнями модели, должны быть реализованы либо в аппаратуре, либо в виде программ.

Функции физического уровня всегда реализуются в аппаратуре. Это адаптеры, мультиплексоры передачи данных, сетевые платы и т.д.

Функции остальных уровней реализуются в виде программных модулей — драйверов.

Архитектура вычислительной сети. Эталонные модели взаимодействия систем.

Дата добавления: 2014-11-28 ; просмотров: 4761 ; Нарушение авторских прав

Архитектура вычислительной сети — описание ее общей модели.

Многообразие производителей вычислительных сетей и сетевых программных продуктов поставило проблему объединения сетей различных архитектур. Для ее решения МОС разработала модель архитектуры открытых систем.

Открытая система — система, взаимодействующая с другими системами в соответствии с принятыми стандартами.

Предложенная модель архитектуры открытых систем служит базой для производителей при разработке совместимого сетевого оборудования. Эта модель не является неким физическим телом, отдельные элементы которого можно осязать. Модель представляет собой самые общие рекомендации для построения стандартов совместимых сетевых программных продуктов. Эти рекомендации должны быть реализованы как в аппаратуре, так и в программных средствах вычислительных сетей.

Рис. 8. Эталонная модель архитектуры открытых систем.

В настоящее время модель взаимодействия открытых систем (ВОС) является наиболее популярной сетевой архитектурной моделью. Модель рассматривает общие функции, а не специальные решения, поэтому не все реальные сети абсолютно точно ей следуют. Модель взаимодействия открытых систем состоит из семи уровней (рис. 8).

7-й уровень — прикладной — обеспечивает поддержку прикладных процессов конечных пользователей. Этот уровень определяет круг прикладных задач, реализуемых в данной вычислительной сети. Он также содержит все необходимые элементы сервиса для прикладных программ пользователя. На прикладной уровень могут быть вынесены некоторые задачи сетевой операционной системы.

6-й уровень — представительный — определяет синтаксис данных в модели, т.е. представление данных. Он гарантирует представление данных в кодах и форматах, принятых в данной системе. В некоторых системах этот уровень может быть объединен с прикладным.

5-й уровень — сеансовый — реализует установление и поддержку сеанса связи между двумя абонентами через коммуникационную сеть. Он позволяет производить обмен данными в режиме, определенном прикладной программой, или предоставляет возможность выбора режима обмена. Сеансовый уровень поддерживает и завершает сеанс связи.

Три верхних уровня объединяются под общим названием — процесс или прикладной процесс. Эти уровни определяют функциональные особенности вычислительной сети как прикладной системы.

4-й уровень — транспортный — обеспечивает интерфейс между процессами и сетью. Он устанавливает логические каналы между процессами и обеспечивает передачу по этим каналам информационных пакетов, которыми обмениваются процессы. Логические каналы, устанавливаемые транспортным уровнем, называются транспортными каналами.

Пакет — группа байтов, передаваемых абонентами сети друг другу.

3-й уровень — сетевой — определяет интерфейс оконечного оборудования данных пользователя с сетью коммутации пакетов. Он также отвечает за маршрутизацию пакетов в коммуникационной сети и за связь между сетями — реализует межсетевое взаимодействие.

Примечание. В технике коммуникаций используется термин оконечное оборудование данных. Он определяет любую аппаратуру, подключенную к канал; связи, в системе обработки данных (компьютер, терминал, специальная аппаратура).

2-й уровень — канальный — уровень звена данных — реализует процесс передачи информации по информационному каналу. Информационный канал — логический канал, он устанавливается между двумя ЭВМ, соединенными физическим каналом Канальный уровень обеспечивает управление потоком данных в виде кадров, в которых упаковываются информационные пакеты, обнаруживает ошибки передачи и реализует алгоритм восстановления информации в случае обнаружения сбоев или потерь данных.

Читать еще:  Архитектура серверных систем

1-й уровень — физический — выполняет все необходимые процедуры в канале связи. Его основная задача — управление аппаратурой передачи данных и подключенным к ней каналом связи.

При передаче информации от прикладного процесса в сеть происходит ее обработка уровнями модели взаимодействия открытых систем (рис. 9).

Рис. 9. Обработка сообщений уровнями модели ВОС

Итак, пусть приложение обращается с запросом к прикладному уровню, например к файловой службе. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата. Обычное сообщение состоит из заголовка и поля данных. Заголовок содержит служебную информацию, которую необходимо передать через сеть прикладному уровню машины-адресата, чтобы сообщить ему, какую работу надо выполнить. В нашем случае заголовок, очевидно, должен содержать информацию о месте нахождения файла и о типе операции, которую необходимо над ним выполнить. Поле данных сообщения может быть пустым или содержать какие-либо данные, например те, которые необходимо записать в удаленный файл. Но для того чтобы доставить эту информацию по назначению, предстоит решить еще много задач, ответственность за которые несут нижележащие уровни.

После формирования сообщения прикладной уровень направляет его вниз по стеку представительному уровню. Протокол представительного уровня на основании информации, полученной из заголовка прикладного уровня, выполняет требуемые действия и добавляет к сообщению собственную служебную информацию — заголовок представительного уровня, в котором содержатся указания для протокола представительного уровня машины-адресата. Полученное в результате сообщение передается вниз сеансовому уровню, который в свою очередь добавляет свой заголовок, и т. д. (Некоторые реализации протоколов помещают служебную информацию не только в начале сообщения в виде заголовка, но и в конце, в виде так называемого «концевика».) Наконец, сообщение достигает нижнего, физического уровня, который собственно и передает его по линиям связи машине-адресату. К этому моменту сообщение «обрастает» заголовками всех уровней (рис. 9.1).

Когда сообщение по сети поступает на машину — адресат, оно принимается ее физическим уровнем и последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует и обрабатывает заголовок своего уровня, выполняя соответствующие данному уровню функции, а затем удаляет этот заголовок и передает сообщение вышележащему уровню.

Каждый уровень реагирует только на свой заголовок. Заголовки верхних уровней нижними уровнями не воспринимаются и не изменяются — они «прозрачны » для нижних уровней. Так, перемещаясь по уровням модели ВОС, информация, наконец, поступает к процессу, которому она была адресована.

Достоинство семиуровневой модели ВОС.

В процессе развития и совершенствования любой системы возникает потребность изменять ее отдельные компоненты. Иногда это вызывает необходимость изменять и другие компоненты, что существенно усложняет и затрудняет процесс модернизации системы.

Здесь и проявляются преимущества семиуровневой модели. Если между уровнями определены однозначно интерфейсы, то изменение одного из уровней не влечет за собой необходимости внесения изменений в другие уровни. Таким образом, существует относительная независимость уровней друг от друга.

Необходимо сделать и еще одно замечание относительно реализации уровней модели ВОС в реальных вычислительных сетях. Функции, описываемые уровнями модели, должны быть реализованы либо в аппаратуре, либо в виде программ.

Функции физического уровня всегда реализуются в аппаратуре. Это адаптеры, мультиплексоры передачи данных, сетевые платы и т.д.

Функции остальных уровней реализуются в виде программных модулей — драйверов.

Трехуровневая архитектура АИС и эталонная модель архитектуры открытых систем

Эталонная модель архитектуры открытых систем (OSI) описывает, каким образом происходит обмен информацией между информационными системами (прикладными процессами) с использо-ванием механизма связи открытых систем. Модель делится на семь функциональных разделов (уровней), которые называются: прикладной, представления, сессии, транспортный, сетевой, уровень звена передачи данных и физический уровень.

Цель прикладного уровня – служить “окном” между общающимися пользователями в среде OSI, через которую происходит весь обмен информацией между пользователями.

Цель уровня представления – представлять информацию (во внешних формах представления) для общающихся пользователей таким способом, который сохранял бы смысл, несмотря на синтаксические различия.

Цель уровня сессии – обеспечивать средства, необходимые взаимодействующим элементам уровня представления для организации и синхронизации их диалога и управления обменом данными. Для этого уровень сессии обеспечивает средства для установления связи посредством сессии между двумя элементами уровня представления и для обеспечения их упорядоченного взаимодействия при обмене данными.

Транспортный уровень и нижележащие уровни (сетевой, звена передачи данных и физический) обеспечивают технические средства передачи данных, сети данных и вычислительные средства, используемые уровнем представления.

Трехуровневая архитектура информационных систем, связана с эталонной моделью OSI (Взаимодействие открытых систем) следующим образом (рисунок 6).

Концептуальный и внешний уровни Трехуровневой архитектуры информационных систем соответствуют функциям прикладного уровня и уровня представления.

Внутренний уровень имеет дело с внутренним представлением данных включая внутреннее манипулирование данными и фактическое физическое хранение данных на запоминающих устройствах. Область деятельности здесь сравнима по характеру с уровнями сессии, транспортным, сетевым, уровнем данных и физическим уровнем. Их функции, однако – соответственно, хранение данных и обмен ими – различны.

Методы моделирования данных

В данном разделе мы рассмотрим некоторые методы моделирования данных в области концептуальных схем. Будут выделены несколько общих аспектов в различных методах и в общих чертах охарактеризованы каждый из них. Эти сведения не являются исчерпывающими. Цель их найти некоторые удобные критерии для:

— выделения различных методов описания предметной области в концептуальной схеме и информационной базе;

— выделения основных понятий, необходимых для языков концептуальной схемы;

— анализа и оценки основ стандартного языка концептуальной схемы.

Рассматриваются следующие критерии.

1. Сопоставление формы и содержания.

Ранние методы концентрировали внимание на формах моделируемых данных. То есть определялись структуры данных, удобные для хранения и/или обработки в ЭВМ. В частности, оптимизировалось обновление данных, хотя уделялось также внимание и проблемам доступа к данным. Термин “моделирование данных” восходит к этим методам. Более поздние методы моделирования подчеркивают важность моделирования смысла (семантики) информации. В этих методах большую роль играют семантические правила для информации. Такие семантические модели считаются независимыми от моделей данных, описывающих формы представления и хранения информации и находятся на более высоком уровне.

Рисунок 6. Взаимосвязь трехуровневой архитектуры АИС с эталонной моделью OSI

Другими словами, эти семантические модели обеспечивают концептуальное представление. Термин “информационное моделирование”, часто ассоциируется с этими методами. При этом вовсе не игнорируются формы данных и их влияние на практические проблемы эффективности. Но считается, что принимать решения по поводу манипулирования и хранения данных –
в частности, по поводу требований к эффективности обработки – можно только при ясном понимании и формальном определении того, что в точности представляют данные, какие правила и ограничения существуют, и какие действия по манипулированию информацией необходимы пользователю.

2. Статические аспекты в сравнении с динамическими аспектами.

Многие из методов моделирования сосредоточены на статических аспектах концептуальной схемы и информационной базы. Другие выделяют динамические аспекты или даже почти полностью ориентированы на действия. Некоторые модели включают в себя все эти аспекты.

3. Возможность различать лексические и нелексические сущности.

Многие методы не допускают четкого различия между лексическими и нелексическими сущностями, т.е. между именами предметов и самими предметами. Другие позволяют проводить такое различие или даже требуют ясного различия между ними.

4. Выразительная мощность.

Под этим подразумевается степень полноты, с которой данный метод может формально выразить все нужные аспекты и ограничения предметной области в концептуальной схеме. Выразительная способность может существенно отличаться от метода к методу.

5. Декомпозиция информации.

Некоторые из методов рассматривают конструкции, относящиеся к единичным, семантически независимым высказываниям предметной области, таким образом, явно формулируя каждое высказывание как отдельный модуль. С другой стороны, некоторые методы позволяют создавать конструкции, выражающие высказывания произвольной сложности, группирующие несколько простых высказываний в один модуль.

6. Разделение различных видов высказываний.

Некоторые из методов моделирования обращаются со всеми высказываниями одинаково,
а другие разделяют различные виды высказываний, обрабатывая (и обозначая) их по-разному. Например, некоторые методы моделирования различают атрибуты сущностей и связи между сущностями, тогда как другие считают это различие несущественным на концептуальном уровне. Другой пример – некоторые методы связывают определенный вид высказываний с понятием типа, считая их базовыми высказываниями, которые обрабатываются специальным образом.

В настоящее время существуют несколько методов моделирования в области информацион-ных систем и баз данных, в следующий перечень включены основные методы:

Читать еще:  Ошибка системного времени ютуб

— абстрактные типы данных;

— модели, основанные на бинарных отношениях;

— модели предложений с глубокой структурой;

— модели сущность – связь;

— модели, ориентированные на функции или на действия;

— модели, основанные на n-арных отношениях;

— сетевые модели (включая CODASYL);

— модели объект – роль;

— модели взаимодействия процессов;

Каждый из этих методов имеет своих сторонников и каждый является особым взглядом на проблемы концептуальных схем и информационных баз. Остается неизученным вопрос, насколько существенно различаются эти методы, и не эквивалентны ли они в некотором смысле. Следующие три группы подходов выбраны для обсуждения проблем моделирования данных в данной юните:

— сущность – атрибут – связь (EAR);

— модели на основе бинарных и элементарных n-арных отношениях;

— интерпретируемая логика предикатов.

Подходы сущность – атрибут – связь (EAR) основываются на следующих понятиях:

— связи между сущностями;

— атрибуты – ассоциации между значениями и сущностями, или между значениями и связями;

В этих подходах используются также понятия тип и реализация применяемые к каждому из этих примитивных понятий.

Источником этих подходов послужил опыт моделирования данных в начале 1970-х годов. Первоначально рассматривались только бинарные связи, атрибуты связей не допускались.
Но последующие работы привели к вариантам, которые допускают n-арные связи между сущностями и позволяют связям иметь атрибуты (рисунки 7-9).

Рисунок 7. Представление связей в моделях EAR

Рисунок 8. Пример бинарной связи (n:2)

Рисунок 9. Пример тройной связи (n = 3)

Подходы EAR можно характеризовать как ориентированные на определение статических аспектов. Поэтому, вообще говоря, они могут только частично описывать различные правила предметной области. Подходы ЕАR часто подразумевают использование особых видов высказываний, которые группируются вместе и выражаются одной макро-конструкцией. Они не предусматривают явного различия лексических и нелексических сущностей.

Подходы на основе бинарных и элементарных n-арных отношений исторически основываются на работах по искусственному интеллекту и лингвистике, где рассматриваются “семантические сети” и другие подобные понятия. Они были предложены в начале 1970-х годов.

Подходы BR (BINARY RELATIONSHIP) различают сущности и имена сущностей, но не различают атрибуты и связи. Кроме того, признаются только бинарные отношения, они основаны на трех основных понятиях:

В этих подходах используются также понятия тип и реализация, применяемые к каждому из примитивных понятий.

Подходы на основе бинарных отношений начинались с определения, главным образом, статических аспектов, но затем они были расширены с целью охватить и динамические аспекты. Эти подходы теперь могут описывать все правила, релевантные для предметной области. Варианты этих подходов явно различают лексические и нелексические сущности.

Подходы на основе элементарных n-арных отношений не ограничивают элементарные высказывания точно двумя сущностями, а допускают описание элементарных высказываний, включающих одну, две или более сущностей (элементарные n-арные отношения).

Подходы на основе интерпретируемой логики воспринимают предметную область состоящей исключительно из сущностей, для которых выполняются определенные высказывания. Концептуальная схема и информационная база образуют описание, состоящее только из множества предложений, закодированных на некотором формальном языке, основанном на формальной логике. Такие предложения состоят из:

— термов и переменных;

Термы и переменные относятся к сущностям в предметной области, а предложения выражают высказывания об этих сущностях.

Суть подходов – формирование интерпретируемой, аксиоматизированной, дедуктивной, формальной системы логики, описывающей предметную область, не налагающей какого-либо ограничения со стороны метода моделирования на саму предметную область.

Основные принципы этих подходов одинаково хорошо применяются как к статическим, так и к динамическим аспектам предметной области и ее описания, которое хранится в концептуальной схеме и информационной базе. Поэтому, эти подходы могут описать все правила, предписанные для предметной области и ее описания. Они также предусматривают явное различие лексических и нелексических сущностей. Эти подходы предусматривают динамическое изменение концептуальной схемы, a также информационной базы.

Эталонная модель архитектуры открытых систем состоит

3 Принципы открытых систем

Основной принцип открытых систем состоит в создании среды, включающей программные и аппаратные средства, службы связи, интерфейсы, форматы данных и протоколы, которая в своей основе имеет развивающиеся, доступные и общепризнанные стандарты и обеспечивает переносимость, взаимодействие и масштабируемость приложений и данных.
Второй принцип состоит в использовании методов функиональной стандартизации – построении и использовании профиля — согласованного набора базовых стандартов, необходимых для решения конкретной задачи или класса задач.

3.1 Эталонная модель среды открытых систем

Для структурирования среды открытых систем используется эталонная модель (Open System Environment Reference Model — OSE/RM), принятая в основополагающем документе ISO/IEC 14252 (Рисунок 3). Она может модернизироваться в зависимости от класса системы. Например, для телекоммуникационных систем хорошо известна 7-уровневая модель взаимосвязи открытых систем ISO/IEC 7498, которую можно представить как расширение модели OSE/RM с детализацией верхнего прикладного уровня.

Рисунок 3–Эталонная модель среды открытых систем

Как видно из рисунка 3., эталонная модель является трехмерной. По вертикали в ней можно выделить следующие компоненты:
— приложение;
— платформу;
— внешнюю среду;
— интерфейс приложения с платформой;
— интерфейс платформы с внешней средой.
По горизонтали имеются следующие компоненты (функциональные области):
— службы операционной системы;
— службы интерфейса «человек-машина»;
— служба управления данными;
— служба обмена данными;
— служба машинной графики;
— служба сетевого обеспечения.
К третьему измерению относятся:
— службы поддержки разработки программного обеспечения;
— службы защиты информации;
— интернационализация;
— служба поддержки распределенной системы;
На базе эталонной модели строятся ее модификации в зависимости от архитектуры конкретной системы. Следует обратить внимание на то, что сеть Интернет, построенная на основе протоколов TCP/IP, так же является частью среды открытой системы, как часть сетевых служб, входящих в одну из шести функциональных областей среды, и далеко не решает всех проблем открытых систем, как об этом иногда ошибочно думают и пишут.

3.2 Классификация профилей

Существует несколько видов классификации профилей. В общем случае профили можно разделить на :
— профили общего назначения;
— профили конкретного применения.

К профилям общего назначения относятся:
— международные стандартизованные профили (International Standardized Profiles — IPS), признанные комитетом ISO/IEC. ISP имеют в международном сообществе такой же статус, что и международные базовые стандарты и направлены на широкую область применения;
— национальные профили, в соответствии с которыми должна строиться национальная Информационная Инфраструктура;
— корпоративные профили;

— технические профили, описывающие среду, такие как профили платформ, профили суперкомпьютерной среды, профили реального времени и др.

К профилям конкретного применения относятся :
— отраслевые или ведомственные профили;
— профили предприятий, организаций, департаментов и подразделений.

Профили общего назначения и профили конкретного применения разрабатываются по методу Workshop различными по количественному составу группами специалистов:
— в разработке профилей общего назначения участвует как можно большее число специалистов;
— в разработке профилей конкретного применения участвуют около 10 специалистов, половину из которых составляют пользователи, а половину — специалисты в области информационных технологий. Очень важно, чтобы эта группа возглавлялась одним из первых лиц (отрасли, организации), хорошо представляющим цели основной деятельности (отрасли, организации и т.д.).

3.3 Масштаб проблемы

В соответствии с принципами открытых систем должна строиться ИИ всех уровней: глобальная, национальная, отраслевая, корпоративная, организации, предприятия и т.д.
Кроме того, принципы открытых систем распространяются на системы всех классов и назначений, в том числе на:
— системы реального времени;
— микропроцессорные встроенные системы;
— среду высокопроизводительных вычислений (Grid-структуру).

В реализации принципов открытых систем заинтересованы все участники процесса информатизации:
— пользователи;
— разработчики;
— изготовители и поставщики продуктов информационных технологий;
— разработчики стандартов.

В связи с тем, что в условиях перехода к информационному обществу практически все отрасли экономики не могут функционировать без развитой ИИ, проблема принимает межотраслевой национальный характер.
Несмотря на очевидные преимущества реализации принципов открытых систем, решение проблемы в нашей стране происходит гораздо более медленными темпами, чем в странах с развитой рыночной экономикой.
Наиболее продвинутой с этой точки зрения представляется сфера науки и образования, где активно создается ИИ, необходимость реализации принципов открытых систем продекларирована в существующих нормативных документах. А главное, в сфере науки и образования сконцентрированы высококвалифицированные кадры, являющиеся и пользователями и разработчиками информационных технологий. Информационная инфраструктура в большинстве академических и учебных институтов создается своими силами без привлечения специализированных организаций.

Ссылка на основную публикацию
Adblock
detector