Remkomplekty.ru

IT Новости из мира ПК
42 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Архитектура закрытого типа

Архитектура компьютера закрытого типа

Компьютеры такой архитектуры эффективны при решении чисто вычислительных задач. Они плохо приспособлены для реализации компьютерных технологий, требующих подключения дополнительных внешних устройств и высокой скорости обмена с ними информацией.

29)Архитектура фон Неймана — широко известный принцип совместного хранения команд и данных в памяти компьютера. Когда говорят об архитектуре фон Неймана, подразумевают принцип хранения данных и инструкций в одной памяти.

Принципы фон Неймана

Принцип однородности памяти

Команды и данные хранятся в одной и той же памяти и внешне в памяти неразличимы. Распознать их можно только по способу использования; то есть одно и, то же значение в ячейке памяти может использоваться и как данные, и как команда, и как адрес в зависимости лишь от способа обращения к нему. Это позволяет производить над командами те же операции, что и над числами, и, соответственно, открывает ряд возможностей. Такой прием носит название модификации команд. Более полезным является другое следствие принципа однородности, когда команды одной программы могут быть получены как результат исполнения другой программы. Эта возможность лежит в основе трансляции — перевода текста программы с языка высокого уровня на язык конкретной вычислительной машины.

Структурно основная память состоит из пронумерованных ячеек, причем процессору в произвольный момент доступна любая ячейка. Двоичные коды команд и данных разделяются на единицы информации, называемые словами, и хранятся в ячейках памяти, а для доступа к ним используются номера соответствующих ячеек — адреса.

Принцип программного управления

Все вычисления, предусмотренные алгоритмом решения задачи, должны быть представлены в виде программы, состоящей из последовательности управляющих слов — команд. Каждая команда предписывает некоторую операцию из набора операций, реализуемых вычислительной машиной. Команды программы хранятся в последовательных ячейках памяти вычислительной машины и выполняются в естественной последовательности, то есть в порядке их положения в программе. При необходимости, с помощью специальных команд, эта последовательность может быть изменена. Решение об изменении порядка выполнения команд программы принимается либо на основании анализа результатов предшествующих вычислений, либо, безусловно.

Принцип двоичного кодирования. Вся информация, как данные, так и команды, кодируются двоичными цифрами 0 и 1. Каждый тип информации представляется двоичной последовательностью и имеет свой формат. Последовательность битов в формате, имеющая определенный смысл, называется полем. В числовой информации обычно выделяют поле знака и поле значащих разрядов. В формате команды можно выделить два поля: поле кода операции и поле адресов.

Основные виды и принципы архитектуры ЭВМ. Основные виды и принципы архитектуры ЭВМ

Структура компьютера — это некоторая модель, устанавливающая состав, порядок и принципы взаимодействия входящих в нее компонентов.

Архитектурой компьютера называется его описание на некотором общем уровне включающее описание пользовательских возможностей программирования систем команд систем адресации организации памяти Архитектура определяет принцип действия, информационные связи взаимное соединение основных логических узлов компьютера: процессора; оперативного ЗУ, Внешних ЗУ и периферийных устройств.

Основные принципы построения ЭВМ были сформулированы американским учёным Джоном фон Нейманом в 40-х годах 20 века:

1. Любую ЭВМ образуют три основные компоненты: процессор, память и устройства ввода-вывода (УВВ).

2. Информация, с которой работает ЭВМ делится на два типа:

набор команд по обработке (программы);

данные подлежащие обработке.

3. И команды, и данные вводятся в память (ОЗУ) – принцип хранимой программы.

4. Руководит обработкой процессор, устройство управления (УУ) которого выбирает команды из ОЗУ и организует их выполнение, а арифметико-логическое устройство (АЛУ) проводит арифметические и логические операции над данными.

5. С процессором и ОЗУ связаны устройства ввода-вывода (УВВ).

Компьютерами с сосредоточенной обработкой(закрытой архитектурой) называются такие вычислительные системы, у которых одно или несколько обрабаты­вающих устройств (процессоров) расположены компактно и исполь­зуют для обмена информацией внутренние шины передачи данных. Компьютеры первого и второго поколения имели архитектуру зак­рытого типа с ограниченным набором внешнего оборудования. Та­кая архитектура характерна для компьютеров, базовая система логи­ческих элементов которых построена на дискретных электронных компонентах (электронных лампах, транзисторах). Введение любого дополнительного функционального блока в такие архитектуры был сопряжен с увеличением потребляемой мощности, занимаемой пло­щади и резко увеличивал стоимость всей системы. Поэтому компь­ютер, выполненный по этой архитектуре, не имел возможности под­ключения дополнительных устройств, не предусмотренных раз­работчиком.

Схема такой компьютерной архитектуры приведена на рисунке.

Оперативная память хранит команды и данные испол­няемых программ, АЛУ обеспечивает не только числовую обработ­ку, но и участвует в процессе ввода-вывода информации, осуществ­ляя ее занесение в оперативную память. Канал ввода/вывода представляет собой специализированное устройство, работающее по командам, подаваемым устройством управления. Канал допускает подключение определенного числа внешних устройств. Устройство управления обеспечивает выполнение команд программы и управляет всеми узлами системы.

Архитектура компьютера закрытого типа

Компьютеры такой архитектуры эффективны при решении чисто целительных задач. Они плохо приспособлены для реализации компьютерных технологий, требующих подключения дополнительных внешних устройств и высокой скорости обмена с ними информацией.

Вычислительные системы с открытой архитектурой. В начале 70-х гг. фирмой DEC (Digital Equipment Corporation) был предложен компьютер совершенно иной архитектуры. Эта архитек­тура позволяла свободно подключать любые периферийные устрой­ства, что сразу же заинтересовало разработчиков систем управления различными техническими системами, так как обеспечивало свобод­ное подключение к компьютеру любого числа датчиков и исполни­тельных механизмов. Главным нововведением являлось подключение всех устройств, независимо от их назначения, кобщей шине переда­чи информации. Подключение устройств к шине осуществлялось в соответствии состандартом шины. Стандарт шины являлся свобод­но распространяемым документом, что позволяло фирмам- произ­водителям периферийного оборудования разрабатывать контроллеры для подключения своих устройств к шинам различных стандартов. Архитектура компьютера открытого типа, основанная на использо­вании общей шины, приведена на рис. Общее управление всей системой осуществляет центральный процессор. Он управляет общей шиной, выделяя время другим устройствам для обмена информаци­ей. Запоминающее устройство хранит исполняемые программы и данные и согласовано уровнями своих сигналов с уровнями сигна­лов самой шины. Внешние устройства, уровни сигналов которых от­личаются от уровней сигналов шины, подключаются к ней через спе­циальное устройство -контроллер. Контроллер согласовывает сигналы устройства с сигналами шины и осуществляет управление устройством по командам, поступающим от центрального процессора.

Архитектура компьютера открытого типа

Читать еще:  Itunes ошибка 14

Контроллер подключается к шине специальными устройствами-портами ввода-вывода. Каждый порт имеет свой номер, и обращение к нему к нему процессора происходит, также как и к ячейке памяти, по этому номеру. Процессор имеет специальные линии управления, сигнал на которых определяет, обращается ли процессор к ячейке памяти или к порту ввода-вывода контроллера внешнего устройства.

Несмотря на преимущества, предоставляемые архитектурой с общей шиной, она имеет и серьезный недостаток, который проявлялся все больше при повышении производительности внешних устройств й возрастании потоков обмена информацией между ними.

К общей шине подключены устройства с разными объемами и скоростью обмена, в связи с чем «медленные» устройства задерживали работу «быстрых». Дальнейшее повышение производительности компьютера было найдено во введении дополнительной локальной шины,

к которой подключались «быстрые» устройства. Архитектура компьютера с общей и локальной шинами приведена на рисунке.

Архитектура компьютера с общей и локальной шиной

Контроллер шины анализирует адреса портов, передаваемые про­цессором, и передает их контроллеру, подключенному к общей или локальной шине.

Конструктивно контроллер каждого устройства размещается на общей плате с центральным процессором и запоминающим устрой­ством или, если устройство не является стандартно входящим в состав компьютера, на специальной плате, вставляемой в специальные разъемы на общей плате —слоты расширения. Дальнейшее развитие микроэлектроники позволило размещать несколько функциональных узлов компьютера и контроллеры стандартных устройств в одной микросхеме СБИС. Это сократило количество микросхем на общей плате и дало возможность ввести две дополнительные локальные шины для подключения запоминающего устройства и устройства отображения, которые имеют наибольший объем обмена с централь­ным процессором и между собой. Хотя архитектура компьютера ос­талась прежней, структура современного персонального компьютера имеет вид, представленный на рисунке.

Структура персонального компьютера

Центральный контроллер играет роль коммутатора, распре­деляющего потоки информации между процессором, памятью, устрой­ством отображения и остальными узлами компьютера. Кроме этого в состав микросхемы центрального контроллера включены устрой­ства, которые поддерживают работу компьютера. К ним относятся

системный таймер’, устройство прямого доступа к памяти, которое обеспечивает обмен данными между внешними устройствами и па­мятью в периоды, когда это не требуется процессору; устройство обработки прерываний, которое обеспечивает быструю реакцию про­цессора на запросы внешних устройств, имеющих данные для пере­дачи.

Функциональный контроллер — это СБИС, которая содержит кон­троллеры для подключения стандартных внешних устройств, таких как клавиатура, мышь, принтер, модем и т.д. Часто в состав этого контроллера входит такое устройство, как аудиокарта, позволяющая получить на внешних динамиках высококачественный звук при про­слушивании музыкальных и речевых файлов.

Для подключения специфических устройств часть общей шины, соединяющая центральный и функциональный контроллеры, имеет слоты расширения для установки плат контроллеров.

закрытая архитектура

закрытая архитектура
Архитектура, спецификации которой не опубликованы либо в них не предусмотрено подключение в устройствах дополнительных плат.
Закрытая архитектура не дает возможности другим производителям выпускать для компьютеров дополнительные внешние устройства.
[Гипертекстовый энциклопедический словарь по информатике Э. Якубайтиса]
[http://www.morepc.ru/dict/]

Тематики

  • информационные технологии в целом
  • closed architecture

Русско-английский словарь нормативно-технической терминологии . academic.ru . 2015 .

Смотреть что такое «закрытая архитектура» в других словарях:

закрытая архитектура — Архитектура, спецификации которой не опубликованы либо в них не предусмотрено подключение в устройствах дополнительных плат. Закрытая архитектура не дает возможности другим производителям выпускать для компьютеров дополнительные внешние… … Справочник технического переводчика

Закрытая пористость газотермического покрытия — – совокупность пор, не сообщающихся с внешней поверхностью газотермического покрытия. [ГОСТ 28076 89] Рубрика термина: Напыления Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги … Энциклопедия терминов, определений и пояснений строительных материалов

Закрытая прорость — – прорость, выходящая на торец и не имеющая выхода на его боковую поверхность. [ГОСТ 2140 81] Рубрика термина: Дефекты, деревообработка Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги … Энциклопедия терминов, определений и пояснений строительных материалов

Терраса (архитектура) — У этого термина существуют и другие значения, см. Терраса. В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удал … Википедия

Подстанция закрытая — – электрическая подстанция, оборудование которой расположено в здании. [ГОСТ 24291 90] Рубрика термина: Энергетическое оборудование Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги … Энциклопедия терминов, определений и пояснений строительных материалов

Пористость закрытая — – обусловлена наличием в структуре замкнутых пор, недоступная для воды в обычных условиях насыщения. [Ушеров Маршак А. В. Бетоноведение: лексикон. М.: РИФ Стройматериалы. 2009. – 112 с.] Рубрика термина: Общие термины, бетон Рубрики… … Энциклопедия терминов, определений и пояснений строительных материалов

Трещина закрытая — Трещина закрытая – трещина, покрытая глазурью. [ГОСТ 13996 93] Рубрика термина: Дефекты керамики Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника … Энциклопедия терминов, определений и пояснений строительных материалов

Шатровая церковь — Шатровые храмы особый архитектурный тип, появившийся и ставший распространенным в русском храмовом зодчестве. Вместо купола здание шатрового храма завершается шатром. Шатровые храмы бывают деревянными и каменными. Каменные шатровые храмы… … Википедия

Шатровый храм — Шатровые храмы особый архитектурный тип, появившийся и ставший распространенным в русском храмовом зодчестве. Вместо купола здание шатрового храма завершается шатром. Шатровые храмы бывают деревянными и каменными. Каменные шатровые храмы… … Википедия

Шатровые храмы — Шатровые храмы особый архитектурный тип, появившийся и ставший распространённым в русском храмовом зодчестве. Вместо купола здание шатрового храма завершается шатром. Шатровые храмы бывают деревянными и каменными. Каменные шатровые храмы… … Википедия

Архитектура вычислительных машин

Различаются Принстонскую и Гарвардскую архитектуру вычислительных машин. Эти архитектурные варианты были предложены в конце 40-х годов специалистами, соответственно, Принстонского и Гарвардского университетов США для разрабатываемых ими моделей компьютеров.

Принстонская архитектура

Принстонская архитектура , которая часто называется архитектурой фон Неймана , характеризуется использованием общей оперативной памяти для хранения программ, данных, а также для организации стека. Для обращения к этой памяти используется общая системная шина, по которой в процессор поступают и команды, и данные.

Архитектура современных персональных компьютеров основана на
магистрально-модульном принципе .

Любую вычислительную машину образуют три основные компонента:

  • процессор,
  • память,
  • устройства ввода-вывода (УВВ).

Информационная связь между устройствами компьютера осуществляется через системную шину (системную магистраль).

Читать еще:  Архитектуры хранения данных

Шина – это кабель, состоящий из множества проводников. Количество проводников, входящих в состав шины, является
максимальной разрядностью шины .

Системная шина, в свою очередь, представляет собой совокупность

  • шины данных, служащей для переноса информации;
  • шины адреса, которая определяет, куда переносить информацию;
  • шины управления, которая определяет правила для передачи информации;
  • шины питания, подводящей электропитание ко всем узлам вычислительной машины.

Системная шина характеризуется тактовой частотой и разрядностью. Количество одновременно передаваемых по шине бит называется
разрядностью шины .

Тактовая частота характеризует число элементарных операций по передаче данных в 1 секунду. Разрядность шины измеряется в битах, тактовая частота – в мегагерцах.

Устройство управления (УУ) формирует адрес команды, которая должна быть выполнена в данном цикле, и выдает управляющий сигнал на чтение содержимого соответствующей ячейки запоминающего устройства (ЗУ). Считанная команда передается в УУ. По информации, содержащейся в адресных полях команды, УУ формирует адреса операндов и управляющие сигналы для их чтения из ЗУ и передачи в арифметико-логическое устройство (АЛУ). После считывания операндов устройство управления по коду операции, содержащемуся в команде, выдает в АЛУ сигналы на выполнение операции. Полученный результат записывается в ЗУ по адресу приемника результата под управлением сигналов записи. Признаки результата (знак, наличие переполнения, признак нуля и так далее) поступают в устройство управления, где записываются в специальный регистр признаков. Эта информация может использоваться при выполнении следующих команд программы, например команд условного перехода.

Устройство ввода позволяет ввести программу решения задачи и исходные данные в ЭВМ и поместить их в оперативную память. В зависимости от типа устройства ввода исходные данные для решения задачи вводятся непосредственно с клавиатуры, либо они должны быть предварительно помещены на какой-либо носитель (дисковый накопитель).

Устройство вывода служит для вывода из ЭВМ результатов обработки исходной информации. Чаще всего это символьная информация, которая выводится с помощью печатающих устройств или на экран дисплея.

Запоминающее устройство или память – это совокупность ячеек, предназначенных для хранения некоторого кода. Каждой из ячеек присвоен свой номер, называемый адресом . Информацией, записанной в ячейке, могут быть как команды в машинном виде, так и данные.

Обработка данных и команд осуществляется посредством арифметико-логического устройства (АЛУ), предназначенного для непосредственного выполнения машинных команд под действием устройства управления. АЛУ и УУ совместно образуют центральное процессорное устройство (ЦПУ). Результаты обработки передаются в память.

Основные принципы построения вычислительных машин с архитектурой фон Неймана

  • Принцип двоичности. Для представления данных и команд используется двоичная система счисления.
  • Принцип программного управления. Программа состоит из набора команд, которые выполняются процессором друг за другом в определённой последовательности.
  • Принцип однородности памяти. Как программы (команды), так и данные хранятся в одной и той же памяти (и кодируются в одной и той же системе счисления, чаще всего – двоичной). Над командами можно выполнять такие же действия, как и над данными.
  • Принцип адресуемости памяти. Структурно основная память состоит из пронумерованных ячеек, процессору в произвольный момент времени доступна любая ячейка.
  • Принцип последовательного программного управления. Все команды располагаются в памяти и выполняются последовательно, одна после завершения другой.
  • Принцип условного перехода. Команды из программы не всегда выполняются одна за другой. Возможно присутствие в программе команд условного перехода (а также команд вызова функций и обработки прерываний), которые изменяют последовательность выполнения команд в зависимости от значений данных. Этот принцип был сформулирован задолго до фон Неймана Адой Лавлейс и Чарльзом Бэббиджем, однако был логически включен в указанный набор как дополняющий предыдущий принцип.

Архитектура фон Неймана имеет ряд важных достоинств.

  • Наличие общей памяти позволяет оперативно перераспределять ее объем для хранения отдельных массивов команд, данных и реализации стека в зависимости от решаемых задач. Таким образом, обеспечивается возможность более эффективного использования имеющегося объема оперативной памяти в каждом конкретном случае применения.
  • Использование общей шины для передачи команд и данных значительно упрощает отладку, тестирование и текущий контроль функционирования системы, повышает ее надежность.

Поэтому Принстонская архитектура в течение долгого времени доминировала в вычислительной технике.

Однако ей присущи и существенные недостатки. Основным из них является необходимость последовательной выборки команд и обрабатываемых данных по общей системной шине. При этом общая шина становится «узким местом» (bottleneck – «бутылочное горло»), которое ограничивает производительность цифровой системы.

Гарвардская архитектура

Гарвардская архитектура была разработана Говардом Эйкеном в конце 1930-х годов в Гарвардском университете с целью увеличить скорость выполнения вычислительных операций и оптимизировать работу памяти. Она характеризуется физическим разделением памяти команд (программ) и памяти данных. В ее оригинальном варианте использовался также отдельный стек для хранения содержимого программного счетчика, который обеспечивал возможности выполнения вложенных подпрограмм. Каждая память соединяется с процессором отдельной шиной, что позволяет одновременно с чтением-записью данных при выполнении текущей команды производить выборку и декодирование следующей команды. Благодаря такому разделению потоков команд и данных и совмещению операций их выборки реализуется более высокая производительность, чем при использовании Принстонской архитектуры.

Недостатки Гарвардской архитектуры связаны с необходимостью проведения большего числа шин, а также с фиксированным объемом памяти, выделенной для команд и данных, назначение которой не может оперативно перераспределяться в соответствии с требованиями решаемой задачи. Поэтому приходится использовать память большего объема, коэффициент использования которой при решении разнообразных задач оказывается более низким, чем в системах с Принстонской архитектурой. Однако развитие микроэлектронной технологии позволило в значительной степени преодолеть указанные недостатки, поэтому Гарвардская архитектура широко применяется во внутренней структуре современных высокопроизводительных микропроцессоров, где используется отдельная кэш-память для хранения команд и данных. В то же время во внешней структуре большинства микропроцессорных систем реализуются принципы Принстонской архитектуры.

Архитектура компьютера

Основной принцип построения ЭВМ носит название архитектуры фон Неймана — американского ученого венгерского происхождения Джона фон Неймана, который ее предложил.

Современную архитектуру компьютера определяют следующие принципы:

Принцип программного управления. Обеспечивает автоматизацию процесса вычислений на ЭВМ. Согласно этому принципу, для решения каждой задачи составляется программа, которая определяет последовательность действий компьютера. Эффективность программного управления будет выше при решении задачи этой же программой много раз (хотя и с разными начальными данными).

Читать еще:  Файл серверная архитектура это

Принцип программы, сохраняемой в памяти. Согласно этому принципу, команды программы подаются, как и данные, в виде чисел и обрабатываются так же, как и числа, а сама программа перед выполнением загружается в оперативную память, что ускоряет процесс ее выполнения.

Принцип произвольного доступа к памяти. В соответствии с этим принципом, элементы программ и данных могут записываться в произвольное место оперативной памяти, что позволяет обратиться по любому заданному адресу (к конкретному участку памяти) без просмотра предыдущих.

На основании этих принципов можно утверждать, что современный компьютер — техническое устройство, которое после ввода в память начальных данных в виде цифровых кодов и программы их обработки, выраженной тоже цифровыми кодами, способно автоматически осуществить вычислительный процесс, заданный программой, и выдать готовые результаты решения задачи в форме, пригодной для восприятия человеком.

Персональный компьютер типа IBM PC имеет довольно традиционную архитектуру микропроцессорной системы и содержит все обычные функциональные узлы: процессор, постоянную и оперативную память, устройства ввода/вывода, системную шину, источник питания.

Архитектура персонального компьютера типа
IBM PC.

Основные особенности архитектуры персональных компьютеров сводятся к принципам компоновки аппаратуры, а также к выбранному набору системных аппаратных средств.

Основные узлы компьютера следующие:

Центральный процессор — это микропроцессор со всеми необходимыми вспомогательными микросхемами, включая внешнюю кэш-память и контроллер системной шины. (О кэш-памяти подробнее будет рассказано в следующих разделах). В большинстве случаев именно центральный процессор осуществляет обмен по системной шине.

Оперативная память может занимать почти все адресуемое пространство памяти процессора. Однако чаще всего ее объем гораздо меньше. В современных персональных компьютерах стандартный объем системной памяти составляет, как правило, от 64 до 512 Мбайт. Оперативная память компьютера выполняется на микросхемах динамической памяти и поэтому требует регенерации.

Постоянная память (ROM BIOS — Base Input/Output System) имеет небольшой объем (до 64 Кбайт), содержит программу начального запуска, описание конфигурации системы, а также драйверы (программы нижнего уровня) для взаимодействия с системными устройствами.

Контроллер прерываний преобразует аппаратные прерывания системной магистрали в аппаратные прерывания процессора и задает адреса векторов прерывания. Все режимы функционирования контроллера прерываний задаются программно процессором перед началом работы.

Контроллер прямого доступа к памяти принимает запрос на ПДП из системной магистрали, передает его процессору, а после предоставления процессором магистрали производит пересылку данных между памятью и устройством ввода/вывода. Все режимы функционирования контроллера ПДП задаются программно процессором перед началом работы. Использование встроенных в компьютер контроллеров прерываний и ПДП позволяет существенно упростить аппаратуру применяемых плат расширения.

Контроллер регенерации осуществляет периодическое обновление информации в динамической оперативной памяти путем проведения по шине специальных циклов регенерации. На время циклов регенерации он становится хозяином (задатчиком) шины.

Перестановщик байтов данных помогает производить обмен данными между 16-разрядным и 8-разрядным устройствами, пересылать целые слова или отдельные байты.

Часы реального времени и таймер-счетчик — это устройства для внутреннего контроля времени и даты, а также для программной выдержки временных интервалов, программного задания частоты и т.д.

Системные устройства ввода/вывода — это те устройства, которые необходимы для работы компьютера и взаимодействия со стандартными внешними устройствами по параллельному и последовательному интерфейсам. Они могут быть выполнены на материнской плате, а могут располагаться на платах расширения.

Платы расширения устанавливаются в слоты (разъемы) системной магистрали и могут содержать оперативную память и устройства ввода/вывода. Они могут обмениваться данными с другими устройствами на шине в режиме программного обмена, в режиме прерываний и в режиме ПДП. Предусмотрена также возможность захвата шины, то есть полного отключения от шины всех системных устройств на некоторое время.

Важная особенность подобной архитектуры — ее открытость, то есть возможность включения в компьютер дополнительных устройств, причем как системных устройств, так и разнообразных плат расширения. Открытость предполагает также возможность простого встраивания программ пользователя на любом уровне программного обеспечения компьютера.

Первый компьютер семейства, получивший широкое распространение, IBM PC XT, был выполнен на базе оригинальной системной магистрали PC XT-Bus. В дальнейшем (начиная с IBM PC AT) она была доработана до магистрали, ставшей стандартной и получившей название ISA (Industry Standard Architecture). До недавнего времени ISA оставалась основой компьютера.

Однако, начиная с появления процессоров i486 (в 1989 году), она перестала удовлетворять требованиям производительности, и ее стали дублировать более быстрыми шинами: VLB (VESA Local Bus) и PCI (Peripheral Component Interconnect bus) или заменять совместимой с ISA магистралью EISA (Enhanced ISA). Постепенно шина PCI вытеснила конкурентов и стала фактическим стандартом, а начиная с 1999 года в новых компьютерах рекомендуется полностью отказываться от магистрали ISA, оставляя только PCI. Правда, при этом приходится отказываться от применения плат расширения, разработанных за долгие годы для подключения к магистрали ISA.

Другое направление совершенствования архитектуры персонального компьютера связано с максимальным ускорением обмена информацией с системной памятью. Именно из системной памяти компьютер читает все исполняемые команды, и в системной же памяти он хранит данные. То есть больше всего обращений процессор совершает именно к памяти. Ускорение обмена с памятью приводит к существенному ускорению работы всей системы в целом.

Но при использовании для обмена с памятью системной магистрали приходится учитывать скоростные ограничения магистрали. Системная магистраль должна обеспечивать сопряжение с большим числом устройств, поэтому она должна иметь довольно большую протяженность; она требует применения входных и выходных буферов для согласования с линиями магистрали. Циклы обмена по системной магистрали сложны, и ускорять их нельзя. В результате существенного ускорения обмена процессора с памятью по магистрали добиться невозможно.

Разработчиками был предложен следующий подход. Системная память подключается не к системной магистрали, а к специальной высокоскоростной шине, находящейся «ближе» к процессору, не требующей сложных буферов и больших расстояний. В таком случае обмен с памятью идет с максимально возможной для данного процессора скоростью, и системная магистраль не замедляет его. Особенно актуальным это становится с ростом быстродействия процессора (сейчас тактовые частоты процессоров персональных компьютеров достигают 1 — 3 ГГц).

Таким образом, структура персонального компьютера из одношинной, применявшейся только в первых компьютерах, становится трехшинной.

Ссылка на основную публикацию
Adblock
detector