Remkomplekty.ru

IT Новости из мира ПК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Архитектура открытых систем это

Технологии открытых систем

5.1. Основные понятия открытых систем

Одним из основных направлений информационных технологий, определяющим эффективность функционирования экономических объектов, выступает технология открытых систем. Идеологию открытых систем реализуют в своих последних разработках все ведущие фирмы-поставщики средств вычислительной техники, передачи информации и программного обеспечения. Их результативность на рынке информационных технологий и систем определяется согласованной научно-технической политикой и реализацией стандартов открытых систем.

Открытыми системами могут являться как конечные , так и промежуточные системы, к которым предъявляются следующие требования:

  • возможность переноса прикладных программ, разработанных должным образом с минимальными изменениями, на широкий диапазон систем;
  • совместную работу с другими прикладными системами на локальных и удаленных платформах;
  • взаимодействие с пользователями в стиле, облегчающем переход от системы к системе.

Открытые системы обладают следующими свойствами, представленными на рис. 5.1.

  1. Переносимость прикладного программного обеспечения и повторная применимость программного обеспечения. Под переносимостью приложений понимается перенос всего соответствующего данному приложению программного обеспечения на другие платформы. Под повторной применимостью программного обеспечения понимается перенос в новые приложения некоторой части работающих программ, что также имеет большое практическое значение и непосредственно относится к целям открытости систем.
  2. Переносимость данных означает возможность переноса на новые прикладные платформы данных, хранящихся во внешней памяти существующих систем информационных технологий. Переносимость данных обеспечивается применением в открытых системах стандартов, строго регламентирующих форматы и способы представления данных.
  3. Функциональная совместимость (интероперабельность) прикладного программного обеспечения — это возможность обмена данными между различными прикладными программами, в том числе между программами, реализуемыми на разнородных прикладных платформах, а также возможность совместного использования данных.
  4. Функциональная совместимость (интероперабельность) управления и безопасности — это унификация и целостность средств административного управления и управления информационной безопасностью, т. е. для обеспечения интеграции систем их средства административного управления и средства защиты должны строиться в соответствии с международными стандартами.
  5. Переносимость пользователей — это обеспечение возможности для пользователей информационных технологий избежать необходимости переобучения при взаимодействии с системами, реализованными на основе различных платформ.
  6. Расширяемость — это способность системы эволюционировать с учетом изменений стандартов, технологий и пользовательских требований.
  7. Масштабируемость — свойство системы, позволяющее ей эффективно работать в широком диапазоне параметров, определяющих технические и ресурсные характеристики системы (примерами таких характеристик могут служить: число процессоров, число узлов сети, максимальное число обслуживаемых пользователей).
  8. Прозрачность реализаций — это способ построения системы, при котором все особенности ее реализации скрываются за стандартными интерфейсами, что и обеспечивает свойство прозрачности реализаций информационных технологий для конечных пользователей систем.
  9. Поддержка пользовательских требований — это точная спецификация пользовательских требований, определенных в виде наборов сервисов, предоставляемых открытыми системами приложениям пользователей.

Однако открытая система необязательно должна быть полностью доступна другим открытым системам. Это ограничение может быть вызвано необходимостью защиты информации в компьютерах и средствах коммуникаций и обеспечивается путем физического отделения или путем использования технических возможностей. Сущность технологии открытых систем состоит в обеспечении возможности переносимости прикладных программ между различными платформами и взаимодействия систем друг с другом. Эта возможность достигается за счет использования международных стандартов на все программные и аппаратные интерфейсы между компонентами систем.

Стандарты стремятся занять центральное место в направлении развития открытых систем и в индустрии информационных технологий. Более 250 подкомитетов в официальных организациях по стандартизации и унификации работают над стандартами в области информационных технологий. Более 1000 стандартов или уже принято этими организациями, или находятся в процессе разработки.

При этом различают стандарты де-факто и де-юре, представленные на рис. 5.2.

Стандарт де-факто означает, что продукт или система какого-то конкретного производителя захватили значительную часть рынка и другие производители стремятся эмулировать, копировать или использовать их с тем, чтобы также расширить свой сектор рынка.

Стандарт де-юре создается официально аккредитованными организациями по разработке стандартов. Он разрабатывается по правилам достижения соглашения в открытом обсуждении, в котором может принять участие любой желающий. При создании промышленных стандартов ни одна из групп не может действовать независимо. Если одна какая-нибудь из групп производителей создает стандарт, в котором не нуждаются пользователи, она потерпит неудачу. То же самое можно сказать и про обратный случай, когда пользователи создадут стандарт, с которым производители не смогут или не захотят согласиться, — попытка создания такого стандарта также будет безуспешной.

Технология открытых систем пользуется успехом потому, что обеспечивает преимущества для разного рода специалистов, связанных с областью информационных технологий.

  • новые возможности сохранения сделанных вложений благодаря свойствам эволюции, постепенного развития функций систем, замены отдельных компонентов без перестройки всей системы;
  • освобождение от зависимости от одного поставщика аппаратных или программных средств, возможность выбора продуктов из предложенных на рынке при условии соблюдения поставщиком соответствующих стандартов открытых систем;
  • дружественность среды, в которой работает пользователь, мобильность персонала в процессе эволюции системы;
  • возможность использования информационный ресурсов, имеющихся в других системах (организациях)
  • возможность использования разных аппаратных платформ;
  • возможность совместного использования прикладных программ, реализованных в разных операционных системах;
  • развитые средства инструментальных сред, поддерживающих проектирование;
  • возможности использования готовых программных продуктов и информационных ресурсов
  • новые возможности разделения труда, благодаря повторному использованию программ;
  • развитые инструментальные среды и системы программирования;
  • возможности модульной организации программных комплексов, благодаря стандартизации программных интерфейсов

Модульная организация программных комплексов, благодаря стандартизации программных интерфейсов, позволяет пересмотреть традиционно сложившееся дублирование функций в разных программных продуктах, из-за чего системы, интегрирующие эти продукты, непомерно разрастаются по объему, теряют эффективность. Известно, что в той же области обработки данных и текстов многие продукты, предлагаемые на рынке (текстовые редакторы, настольные издательские системы, электронные таблицы, системы управления базами данных) по ряду функций дублируют друг друга, а иногда и подменяют функции операционных систем. Кроме того, замечено, что в каждой новой версии этих продуктов размеры их увеличиваются на 15%.

В распределенных системах, содержащих несколько рабочих мест на персональных компьютерах и серверах в локальной сети, избыточность программных кодов из-за дублирования возрастает многократно. Идеология и стандарты открытых систем позволяют по-новому взглянуть на распределение функций между программными компонентами систем и тем самым значительно повысить эффективность.

Архитектура открытых систем

Открытые системы.

Понятие подхода открытых систем.

Применение подхода открытых систем в настоящее время является основной тенденцией в области информационных технологий и средств вычислительной техники, поддерживает эти технологии. Идеально открытых систем реализуют в своих разработках большинством поставщиком средств вычислительной техники и разработчиков программного обеспечения.

Открытая система – это система, которая состоит из компонентов, взаимодействующих друг с другом, через стандартные интерфейсы. Данное определение было сформулировано французской ассоциацией пользователей Unix в 1992 году, так же это исчерпывающий и согласованный набор международных стандартов информационных технологий и профилей, функциональных стандартов, которые специфицируют интерфейсы, службы и поддерживающие форматы, чтобы обеспечить интероперабельность и мобильность приложений, данных и персонала. Данное определение сформулировано международным научным техническим обществом (IEEE). Данное определение подчеркивает аспект среды, которые предоставляют открытые системы для ее использования, т.е. это внешнее описание открытой системы.

Общие свойства открытых систем обычно формулируются следующим образом:

1) расширяемость (масштабируемость)

2) мобильность (переносимость)

3) интеропирабельность (способность к взаимодействию с другими системами)

4) дружественность к пользователю, в том числе легкая управляемость

Читать еще:  Современные архитектурные системы

Понятие система носит двоякий характер. С одной стороны, система – это совокупность взаимодействующих элементов аппаратных и программных. С другой стороны, система может выступать в качестве компонента другой более сложной системы, которая в свою очередь может быть компонентом системы следующего уровня.

Архитектура открытой системы таким образом оказывается иерархическим описанием ее внешнего облика и каждого компонента с точки зрения:

1. пользователя (пользовательский интерфейс)

2. проектировщика системы (среды проектирования)

3. прикладного программиста (среды программирования)

4. системного программиста (архитектура ЭВМ)

5. разработчика аппаратуры (интерфейсы оборудования)

Преимущество идеологии открытой системы

Для пользователя открытые системы обеспечивают:

1) новые возможности сохранения сделанных вложений благодаря свойствам эволюции постепенного развития функций системы и замены отдельных компонентов без перестройки всей системы

2) освобождение от зависимости от одного поставщика аппаратных или программных средств, а так же возможность выбора продуктов из предложенных на рынке при условии соблюдения поставщиком соответствующих стандартов открытых систем

3) дружественность среды, в которой работает пользователь и мобильность персонала в процессе эволюции системы

4) возможность использования информационных ресурсов имеющихся в других системах

Проектировщик информационных систем получает:

1. возможность использования разных аппаратных платформ

2. возможность совместного использования разных прикладных программ, основанных в различных операционных системах

3. развитие средства инструментальных сред, поддерживающих проектирование

4. возможности использования готовых программных продуктов и информационных ресурсов

Разработчики общесистемных программных средств получают:

1. новые возможности разделения труда, благодаря повторному использованию программ

2. развитые инструментальные среды и системы программирования

3. возможности модульной организации программных комплексов, благодаря стандартизации программных интерфейсов

3. Принципы открытых систем

Основной принцип открытых систем состоит в создании среды, включающей программные и аппаратные средства, службы связи, интерфейсы, форматы данных и протоколы, которая в своей основе имеет развивающиеся, доступные и общепризнанные стандарты и обеспечивает переносимость, взаимодействие и масштабируемость приложений и данных. Второй принцип состоит в использовании методов функиональной стандартизации – построении и использовании профиля — согласованного набора базовых стандартов, необходимых для решения конкретной задачи или класса задач.

3.1. Эталонная модель среды открытых систем

Для структурирования среды открытых систем используется эталонная модель (Open System Environment Reference Model — OSE/RM), принятая в основополагающем документе ISO/IEC 14252 (Рисунок 3). Она может модернизироваться в зависимости от класса системы. Например, для телекоммуникационных систем хорошо известна 7-уровневая модель взаимосвязи открытых систем ISO/IEC 7498, которую можно представить как расширение модели OSE/RM с детализацией верхнего прикладного уровня.

Рисунок 3–Эталонная модель среды открытых систем

Как видно из рисунка 3., эталонная модель является трехмерной. По вертикали в ней можно выделить следующие компоненты:

интерфейс приложения с платформой;

интерфейс платформы с внешней средой.

По горизонтали имеются следующие компоненты (функциональные области):

службы операционной системы;

службы интерфейса «человек-машина»;

служба управления данными;

служба обмена данными;

служба машинной графики;

служба сетевого обеспечения.

К третьему измерению относятся:

службы поддержки разработки программного обеспечения;

службы защиты информации;

служба поддержки распределенной системы;

На базе эталонной модели строятся ее модификации в зависимости от архитектуры конкретной системы. Следует обратить внимание на то, что сеть Интернет, построенная на основе протоколов TCP/IP, так же является частью среды открытой системы, как часть сетевых служб, входящих в одну из шести функциональных областей среды, и далеко не решает всех проблем открытых систем, как об этом иногда ошибочно думают и пишут.

3.2. Классификация профилей

Существует несколько видов классификации профилей. В общем случае профили можно разделить на :

профили общего назначения;

профили конкретного применения.

К профилям общего назначения относятся:

международные стандартизованные профили (International Standardized Profiles — IPS), признанные комитетом ISO/IEC. ISP имеют в международном сообществе такой же статус, что и международные базовые стандарты и направлены на широкую область применения;

национальные профили, в соответствии с которыми должна строиться национальная Информационная Инфраструктура;

технические профили, описывающие среду, такие как профили платформ, профили суперкомпьютерной среды, профили реального времени и др.

К профилям конкретного применения относятся :

отраслевые или ведомственные профили;

профили предприятий, организаций, департаментов и подразделений.

Профили общего назначения и профили конкретного применения разрабатываются по методу Workshop различными по количественному составу группами специалистов:

в разработке профилей общего назначения участвует как можно большее число специалистов;

в разработке профилей конкретного применения участвуют около 10 специалистов, половину из которых составляют пользователи, а половину — специалисты в области информационных технологий. Очень важно, чтобы эта группа возглавлялась одним из первых лиц (отрасли, организации), хорошо представляющим цели основной деятельности (отрасли, организации и т.д.).

3.3. Масштаб проблемы

В соответствии с принципами открытых систем должна строиться ИИ всех уровней: глобальная, национальная, отраслевая, корпоративная, организации, предприятия и т.д.

Кроме того, принципы открытых систем распространяются на системы всех классов и назначений, в том числе на:

системы реального времени;

микропроцессорные встроенные системы;

среду высокопроизводительных вычислений (Grid-структуру).

В реализации принципов открытых систем заинтересованы все участники процесса информатизации:

изготовители и поставщики продуктов информационных технологий;

В связи с тем, что в условиях перехода к информационному обществу практически все отрасли экономики не могут функционировать без развитой ИИ, проблема принимает межотраслевой национальный характер. Несмотря на очевидные преимущества реализации принципов открытых систем, решение проблемы в нашей стране происходит гораздо более медленными темпами, чем в странах с развитой рыночной экономикой. Наиболее продвинутой с этой точки зрения представляется сфера науки и образования, где активно создается ИИ, необходимость реализации принципов открытых систем продекларирована в существующих нормативных документах. А главное, в сфере науки и образования сконцентрированы высококвалифицированные кадры, являющиеся и пользователями и разработчиками информационных технологий. Информационная инфраструктура в большинстве академических и учебных институтов создается своими силами без привлечения специализированных организаций.

Концепция архитектуры открытых систем как основа построения цифровых систем интегрального обслуживания

Управление таким сложным, использующим многочисленную и разнообразную аппаратуру процессом, как передача и обработка данных в разветвленной сети, требует формализации и стандартизации процедур:

· выделения и освобождения ресурсов компьютеров и системы телекоммуникации;

· установления и разъединения соединений;

· маршрутизации, согласования, преобразования и передачи данных;

· контроля правильности передачи;

· исправления ошибок и т. д.

Необходимость стандартизации протоколов важна и для «понимания» сетями друг друга при их взаимодействии.

Указанные задачи решаются с помощью системы протоколов и стандартов, регламентирующих нормализованные процедуры взаимодействия элементов сети при установлении связи и передаче данных.

Протокол — это набор правил и методов взаимодействия объектов вычислительной сети, охватывающий основные процедуры, алгоритмы и форматы взаимодействия, обеспечивающие корректность согласования, преобразования и передачи данных в сети. Реализацией протокольных процедур обычно управляют специальные программы, реже — аппаратные средства.

Протоколы для сетей — то же самое, что язык для людей. Говоря на разных языках, люди могут не понимать друг друга, — так же ведут себя и сети, использующие разные протоколы. Но и внутри сети протоколы обеспечивают разные варианты обращения с информацией, разные виды сервиса при работе с ней. От эффективности этих сервисов, их надежности, простоты, удобства и распространенности зависит то, насколько эффективна и комфортна вообще работа человека в сети.

Международной организацией по стандартизации (ISO — International Organization for Standardization) разработана система стандартных протоколов, получившая название модели взаимодействия открытых систем (Open System Interconnection— OSI), часто называемая также эталонной семиуровневой логической моделью открытых систем.

Читать еще:  Архитектура веб приложений

Открытая система — система, доступная для взаимодействия с другими системами в соответствии с принятыми стандартами.

Эта система протоколов базируется на технологии «разделяй и властвуй», то есть на разделении всех процедур взаимодействия на отдельные мелкие функциональные уровни, для каждого из которых легче создать стандартные алгоритмы их построения.

Предложенная модель архитектуры открытых систем служит базой для производителей при разработке совместимого сетевого оборудования. Эта модель не является неким физическим телом, отдельные элементы которого можно осязать. Модель представляет собой самые общие рекомендации для построения стандартов совместимых сетевых программных продуктов. Эти рекомендации должны быть реализованы как в аппаратуре, так и в программных средствах вычислительных сетей.

В настоящее время модель взаимодействия открытых систем (OSI) является наиболее популярной сетевой архитектурной моделью. Модель рассматривает общие функции, а не специальные решения, поэтому не все реальные сети абсолютно точно ей следуют. Модель взаимодействия открытых систем состоит из семи уровней.

7-й уровень — прикладной — обеспечивает поддержку прикладных процессов конечных пользователей. Этот уровень определяет круг прикладных задач, реализуемых в данной вычислительной сети. Он также содержит все необходимые элементы сервиса для прикладных программ пользователя. На прикладной уровень могут быть вынесены некоторые задачи сетевой операционной системы.

6-й уровень — представительный — определяет синтаксис данных в модели, т.е. представление данных. Он гарантирует представление данных в кодах и форматах, принятых в данной системе. В некоторых системах этот уровень может быть объединен с прикладным.

5-й уровень — сеансовый — реализует установление и поддержку сеанса связи между двумя абонентами через коммуникационную сеть. Он позволяет производить обмен данными в режиме, определенном прикладной программой, или предоставляет возможность выбора режима обмена. Сеансовый уровень поддерживает и завершает сеанс связи.

Три верхних уровня объединяются под общим названием — процесс или прикладной процесс. Эти уровни определяют функциональные особенности вычислительной сети как прикладной системы.

4-й уровень — транспортный — обеспечивает интерфейс между процессами и сетью. Он устанавливает логические каналы между процессами и обеспечивает передачу по этим каналам информационных пакетов, которыми обмениваются процессы. Логические каналы, устанавливаемые транспортным уровнем, называются транспортными каналами.

Пакет — группа байтов, передаваемых абонентами сети друг другу.

3-й уровень — сетевой — определяет интерфейс оконечного оборудования данных пользователя с сетью коммутации пакетов. Он также отвечает за маршрутизацию пакетов в коммуникационной сети и за связь между сетями — реализует межсетевое взаимодействие.

2-й уровень — канальный — уровень звена данных — реализует процесс передачи информации по информационному каналу. Информационный канал — логический канал, он устанавливается между двумя ЭВМ, соединенными физическим каналом Канальный уровень обеспечивает управление потоком данных в виде кадров, в которых упаковываются информационные пакеты, обнаруживает ошибки передачи и реализует алгоритм восстановления информации в случае обнаружения сбоев или потерь данных.

1-й уровень — физический — выполняет все необходимые процедуры в канале связи. Его основная задача — управление аппаратурой передачи данных и подключенным к ней каналом связи.

При передаче информации от прикладного процесса в сеть происходит ее обработка уровнями модели взаимодействия открытых систем. Смысл этой обработки заключается в том, что каждый уровень добавляет к информации процесса свой заголовок — служебную информацию, которая необходима для адресации сообщений и для некоторых контрольных функций. Канальный уровень кроме заголовка добавляет еще и концевик — контрольную последовательность, которая используется для проверки правильности приема сообщения из коммуникационной сети.

Физический уровень заголовка не добавляет. Сообщение, обрамленное заголовками и концевиком, уходит в коммуникационную сеть и поступает на абонентские ЭВМ вычисли тельной сети. Каждая абонентская ЭВМ, принявшая сообщение, дешифрирует адреса и определяет, предназначено ли ей данное сообщение.

При этом в абонентской ЭВМ происходит обратный процесс — чтение и отсечение заголовков уровнями модели взаимодействия открытых систем. Каждый уровень реагирует только на свой заголовок. Заголовки верхних уровней нижними уровнями не воспринимаются и не изменяются — они «прозрачны » для нижних уровней. Так, перемещаясь по уровням модели OSI, информация, наконец, поступает к процессу, которому она была адресована.

В процессе развития и совершенствования любой системы возникает потребность изменять ее отдельные компоненты. Иногда это вызывает необходимость изменять и другие компоненты, что существенно усложняет и затрудняет процесс модернизации системы.

Здесь проявляются преимущества семиуровневой модели. Если между уровнями определены однозначно интерфейсы, то изменение одного из уровней не влечет за собой необходимости внесения изменений в другие уровни. Таким образом, существует относительная независимость уровней друг от друга.

Необходимо сделать и еще одно замечание относительно реализации уровней модели OSI в реальных вычислительных сетях. Функции, описываемые уровнями модели, должны быть реализованы либо в аппаратуре, либо в виде программ.

Функции физического уровня всегда реализуются в аппаратуре. Это адаптеры, мультиплексоры передачи данных, сетевые платы и т.д.

Функции остальных уровней реализуются в виде программных модулей — драйверов.

Модель открытых систем является основой построения цифровых систем интегрального обслуживания. Цифровая сеть с интеграцией услуг, ISDN (Integrated Services Digital Network), использует цифровые каналы связи в режиме коммутации каналов. Это самая популярная и распространенная цифровая сеть с коммутацией каналов как в Европе, так и на других континентах (по распространенности она уступает лишь аналоговой телефонной сети).

Дата добавления: 2015-06-17 ; просмотров: 861 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ТЕХНОЛОГИИ ОТКРЫТЫХ СИСТЕМ

Нужно усложнять, чтобы в результате все стало проще, а не упрощать, чтобы в результате все стало сложнее.

Понятие, свойства и стандарты открытых систем.

Этапы развития технологии открытых систем.

История развития эталонной модели открытых систем.

Технология передачи информации в модели взаимодействия открытых систем.

Уровни эталонной модели взаимодействия открытых систем, их назначение и основные функции.

Основные понятия открытых систем

Одним из основных направлений информационных технологий, определяющим эффективность функционирования экономических объектов, выступает технология открытых систем. Идеологию открытых систем реализуют в своих последних разработках все ведущие фирмы-поставщики средств вычислительной техники, передачи информации и программного обеспечения. Их результативность на рынке информационных технологий и систем определяется согласованной научно-технической политикой и реализацией стандартов открытых систем.

Открытая система — это система, которая способна взаимодействовать с другой системой посредством реализации международных стандартных протоколов.

Протокол — это набор правил, определяющих взаимодействие устройств, программ, систем обработки данных, процессов или пользователей.

Открытыми системами могут являться как конечные, так и промежуточные системы, к которым предъявляются следующие требования:

возможность переноса прикладных программ, разработанных должным образом с минимальными изменениями, на широкий диапазон систем;

совместную работу с другими прикладными системами на локальных и удаленных платформах;

взаимодействие с пользователями в стиле, облегчающем переход от системы к системе.

Открытые системы обладают следующими свойствами, представленными на рис. 5.1.

1.Переносимость прикладного программного обеспечения и повторная применимость программного обеспечения. Под переносимостью приложений понимается перенос всего соответствующего данному приложению программного обеспечения на другие платформы. Под повторной применимостью программного обеспечения понимается перенос в новые приложения некоторой части работающих программ, что также имеет большое практическое значение и непосредственно относится к целям открытости систем.

Читать еще:  Централизованная архитектура бд

2.Переносимость данных означает возможность переноса на новые прикладные платформы данных, хранящихся во внешней памяти существующих систем информационных технологий. Переносимость данных обеспечивается применением в открытых системах стандартов, строго регламентирующих форматы и способы представления данных.

3.Функциональная совместимость (интероперабельность) прикладного программного обеспечения — это возможность обмена данными между различными прикладными программами, в том числе между программами, реализуемыми на разнородных прикладных платформах, а также возможность совместного использования данных.

Интероперабельность — это способность системы взаимодействовать с другими системами посредством обмена информацией и совместного ее использования.

4.Функциональная совместимость (интероперабельность) управления и безопасности — это унификация и целостность средств административного управления и управления информационной безопасностью, т. е. для обеспечения интеграции систем их средства административного управления и средства защиты должны строиться в соответствии с международными стандартами.

5.Переносимость пользователей — это обеспечение возможности для пользователей информационных технологий избежать необходимо­сти переобучения при взаимодействии с системами, реализованными на основе различных платформ.

6.Расширяемость — это способность системы эволюционировать с учетом изменений стандартов, технологий и пользовательских требований.

7.Масштабируемость— свойство системы, позволяющее ей эффективно работать в широком диапазоне параметров, определяющих технические и ресурсные характеристики системы (примерами таких характеристик могут служить: число процессоров, число узлов сети, максимальное число обслуживаемых пользователей).

8.Прозрачность реализаций — это способ построения системы, при котором все особенности ее реализации скрываются за стандартными интерфейсами, что и обеспечивает свойство прозрачности реализаций информационных технологий для конечных пользователей систем

9.Поддержка пользовательских требований — это точная спецификация пользовательских требований, определенных в виде наборов сервисов, предоставляемых открытыми системами приложениям пользователей.

Однако открытая система необязательно должна быть полностью доступна другим открытым системам. Это ограничение может быть вызвано необходимостью защиты информации в компьютерах и средствах коммуникаций и обеспечивается путем физического отделения или путем использования технических возможностей. Сущность технологии открытых систем состоит в обеспечении возможности переносимости прикладных программ между различными платформами и взаимодействия систем друг с другом. Эта возможность достигается за счет использования международных стандартов на все программные и аппаратные интерфейсы между компонентами систем.

Стандарт — это документированное соглашение, содержащее технические усло­вия или другие точные критерии соответствия продуктов, процессов и услуг своему назначению.

Стандарты стремятся занять центральное место в направлении развития открытых систем и в индустрии информационных технологий. Более 250 подкомитетов в официальных организациях по стандартизации и унификации работают над стандартами в области информационных технологий. Более 1000 стандартов или уже принято этими организациями, или находятся в процессе разработки.

При этом различают стандарты де-факто и де-юре, представленные на рис. 5.2.

Стандарт де-факто означает, что продукт или система какого-то конкретного производителя захватили значительную часть рынка и другие производители стремятся эмулировать, копировать или использовать их с тем, чтобы также расширить свой сектор рынка.

Стандарт де-юре создается официально аккредитованными организациями по разработке стандартов. Он разрабатывается по правилам достижения соглашения в открытом обсуждении, в котором может принять участие любой желающий. При создании промышленных стандартов ни одна из групп не может действовать независимо. Если одна какая-нибудь из групп производителей создает стандарт, в котором не нуждаются пользователи, она потерпит неудачу. То же самое можно сказать и про обратный случай, когда пользователи создадут стандарт, с которым производители не смогут или не захотят согласиться, — попытка создания такого стандарта также будет безуспешной.

Технология открытых систем пользуется успехом потому, что обеспечивает преимущества для разного рода специалистов, связанных с областью информационных технологий.

2.Распределенная обработка данных. Технология «клиент-сервер»

Организация ЛВС на предприятии дает возможность распределить ресурсы ПК по отдельным функциональным сферам деятельности и изменить технологию обработки данных в направлении децентрализации.

Распределенная обработка данных имеет следующие преимущества:

— возможность увеличения числа удаленных взаимодействующих пользователей, выполняющих функции сбора, обработки, хранения и передачи информации;

— снятие пиковых нагрузок с централизованной базы путем распределения обработки и хранения локальных баз на разных персональных компьютерах;

— обеспечение доступа пользователей к вычислительным ресурсам ЛВС;

— обеспечение обмена данными между удаленными пользователями.

При распределенной обработке производится работа с базой данных, т. е. представление данных, их обработка. При этом работа с базой на логическом уровне осуществляется на компьютере клиента, а поддержание базы в актуальном состоянии — на сервере.

Выделяют локальные и распределенные базы данных:

Локальная база данных — это база данных, которая полностью располагается на одном ПК. Это может быть компьютер пользователя или сервер

Распределенная база данных характеризуется тем, что может размещаться на нескольких ПК, чаще всего в роли таких ПК выступают серверы.

В настоящее время созданы базы данных по всем направлениям человеческой деятельности: экономической, финансовой, кредитной, статистической, научно-технической, маркетинга, патентной информации, электронной документации и т. д.

Создание распределенных баз данных было вызвано двумя тенденциями обработки данных, с одной стороны — интеграцией, а с другой — децентрализацией.

Интеграция обработки информации подразумевает централизованное управление и ведение баз данных.

Децентрализация обработки информации обеспечивает хранение данных в местах их возникновения или обработки, при этом скорость обработки повышается, стоимость снижается, увеличивается степень надежности системы.

Доступ пользователей к распределенной базе данных (РБД) и администрирование осуществляется с помощью системы управления распределенной базой данных, которая обеспечивает выполнение следующих функций:

автоматическое определение компьютера, хранящего требуемые в запросе данные;

декомпозицию распределенных запросов на частные подзапросы к базе данных отдельных ПК;

планирование обработки запросов;

передачу частных подзапросов и их исполнение на удаленных персональных компьютерах;

прием результатов выполнения частных подзапросов;

поддержание в согласованном состоянии копий дублированных данных на различных ПК сети;

управление параллельным доступом пользователей к РБД;

обеспечение целостности РБД.

Распределенная обработка данных реализуется с помощью технологии «клиент-сервер».

Технология «клиент-сервер» — это технология информационной сети, в которой основная часть ее ресурсов сосредоточена в серверах, обслуживающих своих клиентов.

Эта технология предполагает, что каждый из компьютеров сети имеет свое назначение и выполняет свою определенную роль. Одни компьютеры в сети владеют и распоряжаются информационно-вычислительными ресурсами (процессоры, файловая система, почтовая служба, служба печати, база данных), другие имеют возможность обращаться к этим службам, пользуясь их услугами.

Рассматриваемая технология определяет два типа компонентов: серверы и клиенты.

Сервер — это объект, предоставляющий сервис другим объектам сети по их запросам. Сервис — это процесс обслуживания клиентов.

Сервер работает по заданиям клиентов и управляет выполнением их заданий. После выполнения каждого задания сервер посылает полученные результаты клиенту, пославшему это задание.

Сервисная функция в архитектуре «клиент-сервер» описывается комплексом прикладных программ, в соответствии с которым выполняются разнообразные прикладные процессы.

Клиенты — это рабочие станции, которые используют ресурсы сервера и предоставляют удобные интерфейсы пользователя. Интерфейсы пользователя — это процедуры взаимодействия пользователя с системой или сетью.

Клиент является инициатором и использует электронную почту или другие сервисы сервера. В этом процессе клиент запрашивает вид обслуживания, устанавливает сеанс, получает нужные ему результаты и сообщает об окончании работы.

Один из основных принципов технологии «клиент-сервер» заключается в разделении функций стандартного интерактивного приложения на три группы, имеющие различную природу:

Ссылка на основную публикацию
Adblock
detector