Remkomplekty.ru

IT Новости из мира ПК
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Шина адреса это в информатике

Глава 1. Компьютер. Программное и аппаратное обеспечение

Магистраль: шина данных шина адреса и шина управления. Шины периферийных устройств

Вспомним, на прошлом уроке рассматривалось устройство материнской платы. Рассмотрим более подробно, какие же логические устройства можно установить на системную плату, т.к. системная плата наравне с процессором является основным устройством любого современного компьютера. Так же необходимость более подробного знакомства с системной платой обусловлено тем, что на системных платах реализуются шины различных типов. В гнёзда расширения системной платы устанавливаются платы таких периферийных устройств, как модем, сетевая плата, видеоплата и т.п.

Быстродействие различных компонентов компьютера (процессора, оперативной памяти и контроллеров периферийных устройств) может существенно различаться. Для согласования быстродействия на системной плате, как было сказано на прошлом уроке, устанавливаются специальные микросхемы (чипсеты), вклю­чающие в себя контроллер оперативной памяти (так называемый северный мост) и контроллер периферийных устройств (южный мост). (см. рис. 1)

Северный мост обеспечивает обмен информацией между процессором и оперативной памятью по системной шине. В процессоре используется внутреннее умножение частоты, поэтому частота процессора в несколько раз больше, чем частота системной шины. В современных компьютерах частота процессора может превышать частоту системной шины в 10 раз (например, частота процессора 1 ГГц, а частота шины — 100 МГц).

К северному мосту подключается шина PCI ( Peripherial Component Interconnect bus — шина взаимодействия периферийных устройств), которая обеспечивает обмен информацией с контроллерами периферийных устройств. Частота контроллеров меньше частоты системной шины, например, если частота системной шины составляет 100 МГц, то частота шины PCI обычно в три раза меньше — 33 МГц. Контроллеры периферийных устройств (звуковая плата, сетевая плата, SCSI -контроллер, внутренний модем) устанавливаются в слоты расширения системной платы.

По мере увеличения разрешающей способности монитора и глубины цвета требования к быстродействию шины, связывающей видеоплату с процессором и оперативной памятью, возрастают. В настоящее время для подключения видеоплаты обычно используется специальная шина AGP ( Accelerated Graphic Port — ускоренный графический порт), соединенная с северным мостом и имеющая частоту, в несколько раз большую, чем шина PCI .

Южный мост обеспечивает обмен информацией между се­верным мостом и портами для подключения периферийного оборудования.

Устройства хранения информации (жесткие диски, CD — ROM , DVD — ROM ) подключаются к южному мосту по шине UDMA ( Ultra Direct Memory Access — прямое подключение к памяти).

Мышь и внешний модем подключаются к южному мосту с помощью последовательных портов, которые передают элек­трические импульсы, несущие информацию в машинном коде, последовательно один за другим. Обозначаются после­довательные порты как СОМ1 и COM2, а аппаратно реализуются с помощью 25-контактного и 9-контактного разъемов, которые выведены на заднюю панель системного блока.

Принтер подключается к параллельному порту, который обеспечивает более высокую скорость передачи информации, чем последовательные порты, так как передает одновременно 8 электрических импульсов, несущих информацию в машинном коде. Обозначается параллельный порт как LPT , а аппаратно реализуется в виде 25-контактного разъема на задней панели системного блока.

Для подключения сканеров и цифровых камер обычно используется порт USB ( Universal Serial Bus — универсальная последовательная шина), который обеспечивает высокоскоростное подключение к компьютеру сразу нескольких периферийных устройств.

Клавиатура подключается обычно с помощью порта PS/2 или USB .

Все устройства (модули) компьютера подключаются к магистрали. Однако, непосредственно к магистрали можно подключить лишь процессор и оперативную память, остальные устройства подключаются с помощью специальных согласующих устройств — контроллеров (контроллер клавиатуры, контроллер дисководов, видеоадаптер и т.д.)

Рассмотрим структуру магистрали (системной шины), т.к. модульная организация системы опирается на магистральный (шинный) принцип обмена информации.

Магистраль

Магистраль или системная шина — это набор электронных линий, связывающих воедино по адресации памяти, передачи данных и служебных сигналов процессор, память и периферийные устройства.

Системная магистраль осуществляет обмен данными между процессором или ОЗУ с одной стороны и контроллерами внешних устройств компьютера с другой стороны.

Обмен информацией между отдельными устройствами ЭВМ производится по трем многоразрядным шинам, соединяющим все модули, —

  • шине данных,
  • шине адресов ;
  • шине управления .

Шины представляют собой многопроводные линии. Тип системных шин, применяемых в компьютерах с невысокой производительностью — ISA. Это дешевая но «малоинтеллектуальная» шина. Она может обеспечивать обмен с клавиатурой, дисплеем (алфавитно-цифровым), дисководами для гибких дискет, принтерами и модемами. Однако ее возможностей не достаточно для работы с дисководами для жестких дисков, видеоконтроллерами, адаптерами локальных сетей и т.п.

Шина MCA — более производительная, но не совместима с ISA, поэтому не нашла широкого применения.

Шина EISA — совместима с ISA , значительно дороже, чем ISA и не всегда обеспечивая нужную скорость обмена.

Шина VESA (VL) — более дешевая шина, используется в сочетании с ISA или с EISA.

Шина PCI — конкурент шины VESA , используется в PENTIUM в сочетании с ISA или EISA.

Рис 2. Магистрально-модульный принцип

Как уже было сказано, подключение отдельных модулей компьютера к магистрали на физическом уровне осуществляется с помощью контроллеров, а на программном обеспечивается драйверами. Контроллер принимает сигнал от процессора и дешифрует его, чтобы соответствующее устройство смогло принять этот сигнал и отреагировать на него. За реакцию устройства процессор не отвечает — это функция контроллера. Поэтому внешние устройства ЭВМ заменяемы, и набор таких модулей произволен.

Шина данных

По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении, т. е. шина данных является двунаправленной.

Разрядность шины данных определяется разрядностью процессора, т.е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. Разрядность процессоров постоянно увеличивалась по мере развития компьютерной техники.

За 25 лет, со времени создания первого персонального компьютера (1975г.), разрядность шины данных увеличилась с 8 до 64 бит.

К основным режимам работы процессора с использованием шины передачи данных можно отнести следующие: запись/чтение данных из оперативной памяти и из внешних запоминающих устройств, чтение данных с устройств ввода, пересылка данных на устройства вывода.

Шина адреса

Шина адреса предназначена для передачи по ней адреса того устройства (или той ячейки памяти), к которому обращается процессор. Адрес на нее выдает всегда только процессор. По шине данных передается вся информация. При операции записи информацию на нее выставляет процессор, а считывает то устройство (например, память или принтер), адрес которого выставлен на шине адреса. При операции чтения информацию выставляет устройство, адрес которого выставлен на шине адреса, а считывает процессор.

Таким образом, каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении от процессора к оперативной памяти и устройствам (однонаправленная шина).

Разрядность шины адреса определяет адресное пространство процессора, т.е. количество ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:

N =2 I , где I — разрядность шины адреса.

Каждой шине соответствует свое адресное пространство, т. е. максимальный объем адресуемой памяти:

Разрядность шины адреса постоянно увеличивалась и в современных персональных компьютерах составляет 32 бит. Таким образом, максимально возможное количество адресуемых ячеек памяти равно:

N == 2 32 = 4 294 967 296 = 4 Гб

В персональных компьютерах величина адресного пространства процессора и величина фактически установленной оперативной памяти практически всегда различаются. Несмотря на то, что общий объем адресуемой памяти достигает 4 Гбайт, величина фактически установленной оперативной памяти может быть значительно меньше — 32 Мбайта.

Читать еще:  Password protect usb торрент

Аппаратно на системных платах реализуются шины различных типов. В компьютерах РС/286 использовалась шина ISA (Industry Standard Architecture), имевшая 16-разрядную шину данных и 24-разрядную шину адреса. В компьютерах РС/386 и РС/486 используется шина EISA (Extended Industry Standard Architecture), имеющая 32-разрядные шины данных и адреса. В компьютерах PC/ Pentium используется шина PCI (Peripheral Component Interconnect), имеющая 64-разрядную шину данных и 32-разрядную шину адреса.

Шина управления

По шине управления передаются сиг­налы такие, например, как сигналы чтения, записи, готовности, определяющие характер обмена информацией по ма­гистрали. Сигналы управления определяют, какую операцию считывание или запись информации из памяти нужно производить, синхронизируют обмен информацией между устройствами. Кроме того, каждое внешнее устройство, которому нужно обратиться к процессору, имеет на этой шине собственную линию. Когда периферийное устройство «хочет обратиться» к процессору, оно устанавливает на этой линии специальный сигнал (сигнал прерывания), заметив который, процессор прерывает выполняемые в этот момент действия и обращается (командой чтения или записи) к устройству.

Рассмотрим в качестве примера, как процессор читает содержимое ячейки памяти (см. таблицу). Убедившись, что шина в данный момент свободна, процессор помещает на шину адреса требуемый адрес и устанавливает необходимую служебную информацию (операция – чтение, устройство – ОЗУ и т.п.) на шину управления. Теперь ему остается только ожидать ответа от ОЗУ. Последний, “увидев” на шине обращенный к нему запрос на чтение информации, извлекает содержимое необходимой ячейки и помещает его на шину данных. Разумеется, реальный процесс значительно подробнее.

Шина адреса

Шина адреса — компьютерная шина, используемая центральным процессором или устройствами, способными инициировать сеансы DMA, для указания физического адреса слова ОЗУ (или начала блока слов), к которому устройство может обратиться для проведения операции чтения или записи.

Основной характеристикой шины адреса является её ширина в битах. Ширина шины адреса определяет объём адресуемой памяти. Например, если ширина адресной шины составляет 20 бит, и размер слова памяти равен одному байту (минимальный адресуемый объём данных), то объём памяти, который можно адресовать, составляет 2 20 = 1 048 576 байтов (1 МБайт) как в IBM PC/XT.

С точки зрения архитектуры микропроцессорной системы, если не применять мультиплексирование, каждый бит в адресе определяется одним проводником (линией) в магистрали, по которой передаётся адрес.

Если рассматривать структурную схему микро-ЭВМ, то адресная шина активизирует работу всех внешних устройств по команде, которая поступает с микропроцессора.

См. также

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое «Шина адреса» в других словарях:

Шина Адреса — компьютерная шина, используемая центральным процессором или устройствами, способными инициировать сеансы DMA, для указания физического адреса слова ОЗУ (или начала блока слов), к которому устройство желает обратиться для проведения операции… … Википедия

шина адреса — Шина интерфейса, предназначенная для передачи адреса. [ГОСТ Р 50304 92 ] Тематики системы для сопряж. радиоэлектр. средств интерфейсные Обобщающие термины средства реализации взаимодействия EN address bus … Справочник технического переводчика

шина адреса — 71 шина адреса: Шина интерфейса, предназначенная для передачи адреса Источник: ГОСТ Р 50304 92: Системы для сопряжения радиоэлектронных средств интерфейсные. Термины и определения … Словарь-справочник терминов нормативно-технической документации

шина адреса — adreso magistralė statusas T sritis automatika atitikmenys: angl. address bus; address path vok. Adreßbus, m; Adressenweg, m rus. адресная шина, f; шина адреса, f pranc. bus d adresse, m … Automatikos terminų žodynas

Шина адреса — 1. Шина интерфейса, предназначенная для передачи адреса Употребляется в документе: ГОСТ Р 50304 92 Системы для сопряжения радиоэлектронных средств интерфейсные. Термины и определения … Телекоммуникационный словарь

Шина данных — Шина данных шина, предназначенная для передачи информации. В компьютерной технике принято различать выводы устройств по назначению: одни для передачи информации (например, в виде сигналов низкого или высокого уровня), другие для сообщения… … Википедия

Шина (электрич.) — Шина адреса компьютерная шина, используемая центральным процессором или устройствами, способными инициировать сеансы DMA, для указания физического адреса слова ОЗУ (или начала блока слов), к которому устройство желает обратиться для проведения… … Википедия

Шина управления — компьютерная шина, по которой передаются сиг­налы, определяющие характер обмена информацией по ма­гистрали. Сигналы управления определяют, какую операцию (считывание или запись информации из памяти) нужно производить, синхронизируют обмен… … Википедия

Шина Данных — в компьютерной технике принято различать выводы устройств по назначению: одни для передачи информации (например, в виде сигналов низкого или высокого уровня), другие для сообщения всем устройствам (шина адреса) кому эти Данные предназначены. На… … Википедия

шина AT-bus — шина усовершенствованной технологии Системный интерфейс, разработанный фирмой IBM для ПЭВМ серии IBM PC AT, является развитием системного интерфейса XT bus, обеспечивает совместимость с ним. В интерфейсе используются 16 разрядная шина данных, 24… … Справочник технического переводчика

Шина данных. разрядность шины

Шину данных образуют линии, служащие для передачи данных между отдельными структурными группами ПК. Исходным пунктом линий данных является центральный процессор. Он определяет разрядность шины данных, т.е. число линий, по которым передаются данные. Чем выше разрядность шины данных, тем больший объем данных можно передать по ней за некоторый определенный промежуток времени и тем выше быстродействие компьютера.

В первых ПК использовался процессор Intel 8088. Этот 16-разрядный процессор имел всего лишь 8 внешних линий данных (этим объясняется его низкая стоимость). Для внутренних операций было задействовано 16 линий данных, благодаря чему процессор мог одновременно обрабатывать два восьмиразрядных числа. Но на внешнем уровне к нему присоединялась дешевая восьмиразрядная шина данных. Эти 8 линий обеспечивали связь со всеми микросхемами на системной плате, выполняющими функции обработки данных, и всеми платами расширения, установленными в гнездах. Таким образом осуществлялась передача данных между платами расширения и процессором.

Современные процессоры допускают внешнее подключение большего числа линий данных: процессор 80286 — 16 линий данных, процессоры 80386 DX и 80486 DX — 32 линии, а процессор Pentium — 64 линии данных.

Адресная шина. Разрядность шины

Другая группа линий образует адресную шину. Эта шина используется для адресации. Каждая ячейка памяти и устройство ввода-вывода компьютера имеет свой собственный адрес.

При считывании или записи данных процессор должен сообщать, по какому адресу он желает прочитать или записать данные, для чего необходимо указать этот адрес.

В отличие от шины данных шина адреса является однонаправленной.

Разрядность адресной шины определяет максимальное число адресов, по которым может обратиться процессор, т. е. число линий в адресной шине показывает, каким объемом памяти может управлять процессор. Учитывая, что одна адресная линия обеспечивает представление одного разряда двоичного числа, формулу для максимального объема адресуемой памяти можно записать в следующем виде:

максимальное число адресов = 2n,

где n — разрядность адресной шины.

Процессор 8088 имел 20 адресных линий, что в соответствии с приведенной формулой обеспечивало адресацию памяти объемом:

220 =1 048 576 байт = 1024 Кбайт = 1 Мбайт.

Это тот самый предельный объем памяти, который все еще имеет силу в операционной системе DOS.

Совсем иная ситуация с процессором 80286. Он имеет 24 адресных линии и поэтому в состоянии управлять памятью объемом:

Читать еще:  Относительный адрес ячейки

224= 16 777 216 байт =16 Мбайт.

Для обеспечения связи с микросхемами памяти число адресных линий процессора должно равняться числу адресных линий на системной плате.

Процессоры 80386, 80486 и Pentium имеют 32 адресных линии, что обеспечивает адресацию свыше 4 млрд. ячеек памяти. На системной плате с такими процессорами должно быть 32 линии, обеспечивающие обмен адресами между центральным процессором и всеми важными периферийными микросхемами.

Линии шины управления на системной плате служат для управления различными компонентами ПК. По выполняемой ими функции их можно сравнить с переводной стрелкой на железнодорожных путях.

С помощью небольшого числа линий шина управления обеспечивает такое функционирование системы, чтобы в каждый данный момент времени только одна структурная единица ПК пересылала данные по шине данных или осуществляла адресацию памяти.

К шине может быть подключено много приемных устройств. Сочетание управляющих и адресных сигналов определяет, для кого именно предназначаются данные на шине. Управляющая логика возбуждает специальные стробирующие сигналы, чтобы указать получателю, когда ему следует принимать данные.

Управляющая логика активизирует в каждый конкретный момент только одно устройство, которое становиться ведущим. Когда устройство активизировано, оно помещает свои данные на шину. Все другие микросхемы в этот промежуток времени должны блокироваться с помощью соответствующего сигнала на линии управления.

Микропроцессор взаимодействует с внешней средой с помощью шины адреса/данных/состояния и нескольких управляющих сигналов. Собственно взаимодействие заключается в выполнении одной из двух операций: МП либо выводит (записывает) данные, либо вводит (считывает) данные или команды. В каждой из этих операций процессор должен указывать то устройство, с которым он будет взаимодействовать; другими словами, процессор должен адресовать ячейку памяти либо порт ввода или вывода.

Для передачи данных или выборки команды процессор инициирует так называемый цикл шины. Кроме процессора, цикл шины могут инициировать и другие устройства, например, арифметический сопроцессор.

Цикл шины представляет собой последовательность событий, в течение которой процессор выдает адрес ячейки памяти или периферийного устройства, а затем формирует сигнал записи или считывания, а также выдает данные в операции записи. Выбранное устройство воспринимает данные с шины в цикле записи или помещает данные на шину в цикле считывания. По окончании цикла шины устройство фиксирует записываемые данные или снимает считываемые данные.

Рассмотрим цикл шины микропроцессора 8086, который имеет совмещенную 20-разрядную шину адреса/данных/состояния и шину управления (рис. 4).

Рис. 4. Шины микропроцессора 8086

Цикл шины микропроцессора 8086 состоит минимум из четырех тактов синхронизации, называемых также состояниями T, которые идентифицируются спадающим фронтом сигнала синхронизации CLC. В первом такте (T1) процессор выдает на шину адреса/данных/состояния AD20-AD0 адрес устройства, которое будет источником или получателем информации в текущем цикле шины. Во втором такте (T2) процессор снимает адрес с шины и либо переводит тристабильные буферы линий AD15-AD0 в высокоимпедансное состояние, подготавливая их к выводу информации в цикле считывания, либо выдает на них данные в цикле записи.

Управляющие сигналы, инициирующие считывание, запись или подтверждение прерываний, всегда выдаются в такте T2. В максимальной конфигурации системы сигнал записи формируется в такте T3, чтобы гарантировать стабилизацию сигналов данных до начала действия этого сигнала.

В такте T2 старшие четыре линии адреса/состояния переключаются с режима выдачи адреса на режим выдачи состояния. Сигналы состояния предназначены в основном для диагностических целей, например, идентифицируют сегментный регистр, который участвует в формировании адреса памяти.

В течение такта T3 процессор сохраняет информацию на линиях состояния. На шине данных в цикле записи сохраняются выводимые данные, а в цикле считывания производится опрос вводимых данных.

Тактом T4 заканчивается цикл шины. В этом такте снимаются все управляющие сигналы и выбранное устройство отключается от шины.

Таким образом, цикл шины для памяти или периферийного устройства представляет собой асинхронное действие. Устройство может управлять циклом шины только путем введения состояний ожидания.

Процессор выполняет цикл шины в том случае, когда ему необходимо осуществить запись или считывание информации. Если циклы шины не требуются, шинный интерфейс реализует холостые состояния Ti, в течение которых процессор сохраняет на линиях состояния сигналы состояния от предыдущего цикла шины.

Статьи к прочтению:

Как выбрать видеокарту. Или почему шина 256 бит — не рулит. (см. описание)

Похожие статьи:

Современные устройства радиоэлектронной техники используют большое число микросхем, что требует много линий для адресации, выбора и управления их…

Шины микропроцессорной системы и циклы обмена Самое главное, что должен знать разработчик микропроцессорных систем — это принципы организации обмена…

Шина данных это

Шина данных это система передачи информации в ПК

Шина данных это одна из самых важных шин, из-за необходимости которой собственно и формируется вся остальная система. Численность имеющихся у нее разрядов указывает на скорость и производительность обмена данными, кроме этого определяет наибольшее число выполняемых команд. Шина данных это устройство, которое передает данные всегда в двух направлениях.

Для работы компьютера предполагается наличие в его составе комплекса определенных систем, и отсутствие хотя бы одной из них приведет к полной неработоспособности ПК. Ниже перечислены основные системы:

  1. Центральный процессор
  2. Графический адаптер
  3. Система оперативной памяти (ОЗУ)

Но все-таки эти модули, даже в комплексе не будут выполнять тех функций, которые от них требуются. Для того, чтобы все компоненты функционировали как положено, среди них создается взаимосвязь, с помощью которой будет выполняться необходимые вычислительные и другие операции. Средства связи такого рода создают именно компьютерные системные шины. Следовательно, можно утверждать, что данный компонент является крайне необходимым элементом в компьютерном блоке.

Компьютерная шина

Компьютерная шина – это электронная магистраль предназначенная для передачи информации между функциональными модулями компьютера. Такими как: центральный процессор, графический адаптер, винчестер, ОЗУ и остальными устройствами. Данная система включает в себя некоторое количество других шин, в частности: шины адреса, шина данных, кстати их может быть несколько, и шина управления.

Основное деление компьютерных шин

Отличие шин друг от друга базируется на нескольких моментах. Главным признаком считается Первенствующим показателем является место расположения. Исходя из этого шины бывают следующих типов:

  1. Шины для создания магистральной связи между компонентами установленными внутри компьютерного блока, а именно: центральный процессор, оперативное запоминающее устройство, системная плата. В современных компьютерах она обозначается как — локальная шина.
  2. Шины служащие для подсоединения к системной плате периферийных гаджетов, таких, как: адаптеры, карты памяти, называются — внешними шинами.

По-большому счету, компьютерной шиной можно охарактеризовать практически всякое устройство, служащее для создания связи между двумя и более компонентами. Даже оборудование для подключения компьютера к сети Интернет в определенной степени считается системной шиной.

Одна из самых значимых устройств связи

Все действия выполняемые нами с помощью компьютера, будь то работа с документами или прослушивание музыкальных треков, компьютерные игры — все это возможно только благодаря процессору. Равным образом и процессор не может выполнять свои функции, не имея при этом магистральной связи с остальными значимыми компонентами осуществляющими полноценную работу компьютера. То есть, именно с помощью системной шины процессора организуется в одно целое комплекс устройств.

Производительность компьютера

Все основные компьютерные шины в зависимости от предназначения, делятся на несколько категорий:

  1. Адресные шины
  2. Шины управления
  3. Шины данных

У процессора может быть задействовано несколько системных трактов связи, при этом, как показала практика, наличие определенного количества шин увеличивает эффективность работы компьютера. Пропускная способность компьютерной шины в большей части определяет производительность ПК. Принцип ее действия заключается в определение скорости трансляции данных, передающихся с локальных устройств на другие вычислительные модули и обратно.

Читать еще:  История сменить ip адрес

Системные шины в современных компьютерах

Стандартная локальная шина, разработанная ассоциацией VESA, получила компетентное признание в мире компьютерных технологий. Официальное ее название VL-Bus и она же является одной из самых популярных шин локального назначения со дня ее представления. Используя шину VL-Bus можно осуществлять 32-разрядную передачу информации между графическим адаптером и процессором либо винчестером.

Однако, такая магистраль связи не способна поддерживать корректную работу микропроцессора. Вследствие этого она встраивается в систему вместе с 16-разрядной шиной ISA, и таким образом выполняет функции дополнительного расширения.

Компьютерная шина, оперативка, центральный процессор и мосты

Урок №1-2 по теме Архитектура компьютера. Магистраль: шина данных, шина адреса и шина управления. Шины переферийных устройств

Главная > Урок

Урок №1-2 по теме «Архитектура компьютера. Магистраль: шина данных, шина адреса и шина управления. Шины переферийных устройств.

Цели урока:


Образовательные:


изучить принцип работы компьютера.


помочь учащимся усвоить магистрально-модульный принцип построения компьютера, дать основные понятия, необходимые для начала работы на компьютере.


уметь ориентироваться в функциях отдельных узлов компьютера.


знать основные принципы построения компьютера


Воспитательная:


формирование самостоятельности и ответственности при работе с компьютером


Развивающая:


развитие внимания и аналитического мышления


развитие навыков работы с клавиатурой

Оборудование:
компьютер, компьютерная презентация.

Объяснение нового материала

Персональные компьютеры, более чем какой-либо другой вид ЭВМ, способствуют переходу к новым компьютерным информационным технологиям, которым свойственны:

дружественный информационный, программный и технический интерфейс с пользователем;

выполнение информационных процессов в режиме диалога с пользователем;

сквозная информационная поддержка всех процессов на основе интегрированных баз данных;

так называемая «безбумажная технология».

Компьютер — это многофункциональное электронное устройство для накопления, обработки и передачи информации.

Под архитектурой компьютера понимается его логическая организация, структура и ресурсы, т.е. средства вычислительной системы, которые могут быть выделены процессу обработки данных на определенный интервал времени.

В основу построения большинства ЭВМ положены принципы, сформулированные в 1945 г. Джоном фон Нейманом:

1. Принцип программного управления (программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определённой последовательности).

2. Принцип однородности памяти (программы и данные хранятся в одной и той же памяти; над командами можно выполнять такие же действия, как и над данными).

3. Принцип адресности (основная память структурно состоит из нумерованных ячеек).

ЭВМ, построенные на этих принципах, имеют классическую архитектуру (архитектуру фон Неймана).

Архитектура ПК определяет принцип действия, информационные связи и взаимное соединение основных логических узлов компьютера:

Магистрально-модульный принцип.
Основой архитектуры современных компьютеров является магистрально-модульный принцип организации аппаратных компонентов. Здесь все информационные и управляющие потоки между устройствами организуются с помощью шинной технологии.

В системную магистраль (системную шину) микропроцессорной системы входит три основные информационные шины: адреса, данных и управления.

— это основная шина, ради которой и создается вся система. Количество ее разрядов (линий связи) определяет скорость и эффективность информационного обмена, а также максимально возможное количество команд. Шина данных всегда двунаправленная, так как предполагает передачу информации в обоих направлениях. Наиболее часто встречающийся тип выходного каскада для линий этой шины — выход с тремя состояниями.

Обычно шина данных имеет 8, 16, 32 или 64 разряда. Понятно, что за один цикл обмена по 64-разрядной шине может передаваться 8 байт информации, а по 8-разрядной — только один байт. Разрядность шины данных определяет и разрядность всей магистрали. Например, когда говорят о 32-разрядной системной магистрали, подразумевается, что она имеет 32-разрядную шину данных.

— вторая по важности шина, которая определяет максимально возможную сложность микропроцессорной системы, то есть допустимый объем памяти и, следовательно, максимально возможный размер программы и максимально возможный объем запоминаемых данных. Количество адресов, обеспечиваемых шиной адреса, определяется как 2 N , где N — количество разрядов. Например, 16-разрядная шина адреса обеспечивает 65536 адресов. Разрядность шины адреса обычно кратна 4 и может достигать 32 и даже 64. Шина адреса может быть однонаправленной (когда магистралью всегда управляет только процессор) или двунаправленной (когда процессор может временно передавать управление магистралью другому устройству, например контроллеру ПДП).

Как в шине данных, так и в шине адреса может использоваться положительная логика или отрицательная логика. При положительной логике высокий уровень напряжения соответствует логической единице на соответствующей линии связи, низкий — логическому нулю. При отрицательной логике — наоборот.

— это вспомогательная шина, управляющие сигналы на которой определяют тип текущего цикла и фиксируют моменты времени, соответствующие разным частям или стадиям цикла. Кроме того, управляющие сигналы обеспечивают согласование работы процессора (или другого хозяина магистрали, задатчика, master) с работой памяти или устройства ввода/вывода (устройства-исполнителя, slave). Управляющие сигналы также обслуживают запрос и предоставление прерываний, запрос и предоставление прямого доступа.

Сигналы шины управления могут передаваться как в положительной логике (реже), так и в отрицательной логике (чаще). Линии шины управления могут быть как однонаправленными, так и двунаправленными. Типы выходных каскадов могут быть самыми разными: с двумя состояниями (для однонаправленных линий), с тремя состояниями (для двунаправленных линий), с открытым коллектором (для двунаправленных и мультиплексированных линий).

Для снижения общего количества линий связи магистрали часто применяется мультиплексирование шин адреса и данных. То есть одни и те же линии связи используются в разные моменты времени для передачи как адреса, так и данных (в начале цикла — адрес, в конце цикла — данные). Для фиксации этих моментов (стробирования) служат специальные сигналы на шине управления. Понятно, что мультиплексированная шина адреса/данных обеспечивает меньшую скорость обмена, требует более длительного цикла обмена (Рис. 1). По типу шины адреса и шины данных все магистрали также делятся на мультиплексированные и немультиплексированные.

Мультиплексирование шин адреса и данных.

Порты и контроллеры.

Рассматривая IBM-совместимую компьютерную архитектуру можно разделить все устройства на системные (процессор, оперативная память и т.д.) и внешние, которые подразделяются на запоминающие (жесткий диск, CR-ROM и т.д.) и устройства ввода/вывода (клавиатура, принтер и т.д.). Каждое из устройств должно подсоединяться к системной шине. Существуют следующие основные способы подключения устройств к системной шине:

— Используется для системных устройств. Обычно встроен в материнскую плату. Устройство подключенное к разъему с точки зрения архитектуры является жизненно необходимым для работы ПК. Системная шина также имеет разъемы на материнской плате для подключения контроллеров. Наиболее распространненными являются PCI, AGP и PCI-Express. Используя разъем устройство подключается непосредственно к системной шине

— Представляет собой аналог разъема с тем отличием, что порт предназначен для подключения внешних устройств не соединяющихся напрямую с материнской платой. Работу устройств подключенных посредством порта обычно контролирует операционнная система. Различают:

параллельные порты, в которых данные передаются параллельными блоками. Последовательные порты: COM.

последовательные порты, в которых данные передаются последовательно друг за другом. Параллельные порты: LPT.

последовательно-параллельные порты, в которых данные передаются последовательно, но параллельными блоками. Последовательно-параллельные порты: USB.

Синонимом порта является интерфейс.

— обеспечивает сопряжение внешнего устройства и системной платы. Контроллеры бывают либо интегрированными (встроенными) в материнскую плату(контроллер клавиатуры, жесткого диска и т.д.), либо выполняются в виде отдельной платы, вставляющейся в разъем на МП, в этом случае контроллер называют адаптером (видеоадаптер, сетевой адаптер и т.д.).

Закрепление изученного материала

Рис. 2 Общая организация узлов и устройств ЭВМ

Ссылка на основную публикацию
Adblock
detector