Remkomplekty.ru

IT Новости из мира ПК
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Разрядность адресной шины

Глава 1. Компьютер. Программное и аппаратное обеспечение

Магистраль: шина данных шина адреса и шина управления. Шины периферийных устройств

Вспомним, на прошлом уроке рассматривалось устройство материнской платы. Рассмотрим более подробно, какие же логические устройства можно установить на системную плату, т.к. системная плата наравне с процессором является основным устройством любого современного компьютера. Так же необходимость более подробного знакомства с системной платой обусловлено тем, что на системных платах реализуются шины различных типов. В гнёзда расширения системной платы устанавливаются платы таких периферийных устройств, как модем, сетевая плата, видеоплата и т.п.

Быстродействие различных компонентов компьютера (процессора, оперативной памяти и контроллеров периферийных устройств) может существенно различаться. Для согласования быстродействия на системной плате, как было сказано на прошлом уроке, устанавливаются специальные микросхемы (чипсеты), вклю­чающие в себя контроллер оперативной памяти (так называемый северный мост) и контроллер периферийных устройств (южный мост). (см. рис. 1)

Северный мост обеспечивает обмен информацией между процессором и оперативной памятью по системной шине. В процессоре используется внутреннее умножение частоты, поэтому частота процессора в несколько раз больше, чем частота системной шины. В современных компьютерах частота процессора может превышать частоту системной шины в 10 раз (например, частота процессора 1 ГГц, а частота шины — 100 МГц).

К северному мосту подключается шина PCI ( Peripherial Component Interconnect bus — шина взаимодействия периферийных устройств), которая обеспечивает обмен информацией с контроллерами периферийных устройств. Частота контроллеров меньше частоты системной шины, например, если частота системной шины составляет 100 МГц, то частота шины PCI обычно в три раза меньше — 33 МГц. Контроллеры периферийных устройств (звуковая плата, сетевая плата, SCSI -контроллер, внутренний модем) устанавливаются в слоты расширения системной платы.

По мере увеличения разрешающей способности монитора и глубины цвета требования к быстродействию шины, связывающей видеоплату с процессором и оперативной памятью, возрастают. В настоящее время для подключения видеоплаты обычно используется специальная шина AGP ( Accelerated Graphic Port — ускоренный графический порт), соединенная с северным мостом и имеющая частоту, в несколько раз большую, чем шина PCI .

Южный мост обеспечивает обмен информацией между се­верным мостом и портами для подключения периферийного оборудования.

Устройства хранения информации (жесткие диски, CD — ROM , DVD — ROM ) подключаются к южному мосту по шине UDMA ( Ultra Direct Memory Access — прямое подключение к памяти).

Мышь и внешний модем подключаются к южному мосту с помощью последовательных портов, которые передают элек­трические импульсы, несущие информацию в машинном коде, последовательно один за другим. Обозначаются после­довательные порты как СОМ1 и COM2, а аппаратно реализуются с помощью 25-контактного и 9-контактного разъемов, которые выведены на заднюю панель системного блока.

Принтер подключается к параллельному порту, который обеспечивает более высокую скорость передачи информации, чем последовательные порты, так как передает одновременно 8 электрических импульсов, несущих информацию в машинном коде. Обозначается параллельный порт как LPT , а аппаратно реализуется в виде 25-контактного разъема на задней панели системного блока.

Для подключения сканеров и цифровых камер обычно используется порт USB ( Universal Serial Bus — универсальная последовательная шина), который обеспечивает высокоскоростное подключение к компьютеру сразу нескольких периферийных устройств.

Клавиатура подключается обычно с помощью порта PS/2 или USB .

Все устройства (модули) компьютера подключаются к магистрали. Однако, непосредственно к магистрали можно подключить лишь процессор и оперативную память, остальные устройства подключаются с помощью специальных согласующих устройств — контроллеров (контроллер клавиатуры, контроллер дисководов, видеоадаптер и т.д.)

Рассмотрим структуру магистрали (системной шины), т.к. модульная организация системы опирается на магистральный (шинный) принцип обмена информации.

Магистраль

Магистраль или системная шина — это набор электронных линий, связывающих воедино по адресации памяти, передачи данных и служебных сигналов процессор, память и периферийные устройства.

Системная магистраль осуществляет обмен данными между процессором или ОЗУ с одной стороны и контроллерами внешних устройств компьютера с другой стороны.

Обмен информацией между отдельными устройствами ЭВМ производится по трем многоразрядным шинам, соединяющим все модули, —

  • шине данных,
  • шине адресов ;
  • шине управления .

Шины представляют собой многопроводные линии. Тип системных шин, применяемых в компьютерах с невысокой производительностью — ISA. Это дешевая но «малоинтеллектуальная» шина. Она может обеспечивать обмен с клавиатурой, дисплеем (алфавитно-цифровым), дисководами для гибких дискет, принтерами и модемами. Однако ее возможностей не достаточно для работы с дисководами для жестких дисков, видеоконтроллерами, адаптерами локальных сетей и т.п.

Шина MCA — более производительная, но не совместима с ISA, поэтому не нашла широкого применения.

Шина EISA — совместима с ISA , значительно дороже, чем ISA и не всегда обеспечивая нужную скорость обмена.

Шина VESA (VL) — более дешевая шина, используется в сочетании с ISA или с EISA.

Шина PCI — конкурент шины VESA , используется в PENTIUM в сочетании с ISA или EISA.

Рис 2. Магистрально-модульный принцип

Как уже было сказано, подключение отдельных модулей компьютера к магистрали на физическом уровне осуществляется с помощью контроллеров, а на программном обеспечивается драйверами. Контроллер принимает сигнал от процессора и дешифрует его, чтобы соответствующее устройство смогло принять этот сигнал и отреагировать на него. За реакцию устройства процессор не отвечает — это функция контроллера. Поэтому внешние устройства ЭВМ заменяемы, и набор таких модулей произволен.

Шина данных

По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении, т. е. шина данных является двунаправленной.

Разрядность шины данных определяется разрядностью процессора, т.е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. Разрядность процессоров постоянно увеличивалась по мере развития компьютерной техники.

За 25 лет, со времени создания первого персонального компьютера (1975г.), разрядность шины данных увеличилась с 8 до 64 бит.

К основным режимам работы процессора с использованием шины передачи данных можно отнести следующие: запись/чтение данных из оперативной памяти и из внешних запоминающих устройств, чтение данных с устройств ввода, пересылка данных на устройства вывода.

Шина адреса

Шина адреса предназначена для передачи по ней адреса того устройства (или той ячейки памяти), к которому обращается процессор. Адрес на нее выдает всегда только процессор. По шине данных передается вся информация. При операции записи информацию на нее выставляет процессор, а считывает то устройство (например, память или принтер), адрес которого выставлен на шине адреса. При операции чтения информацию выставляет устройство, адрес которого выставлен на шине адреса, а считывает процессор.

Читать еще:  Подмена электронного адреса

Таким образом, каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении от процессора к оперативной памяти и устройствам (однонаправленная шина).

Разрядность шины адреса определяет адресное пространство процессора, т.е. количество ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:

N =2 I , где I — разрядность шины адреса.

Каждой шине соответствует свое адресное пространство, т. е. максимальный объем адресуемой памяти:

Разрядность шины адреса постоянно увеличивалась и в современных персональных компьютерах составляет 32 бит. Таким образом, максимально возможное количество адресуемых ячеек памяти равно:

N == 2 32 = 4 294 967 296 = 4 Гб

В персональных компьютерах величина адресного пространства процессора и величина фактически установленной оперативной памяти практически всегда различаются. Несмотря на то, что общий объем адресуемой памяти достигает 4 Гбайт, величина фактически установленной оперативной памяти может быть значительно меньше — 32 Мбайта.

Аппаратно на системных платах реализуются шины различных типов. В компьютерах РС/286 использовалась шина ISA (Industry Standard Architecture), имевшая 16-разрядную шину данных и 24-разрядную шину адреса. В компьютерах РС/386 и РС/486 используется шина EISA (Extended Industry Standard Architecture), имеющая 32-разрядные шины данных и адреса. В компьютерах PC/ Pentium используется шина PCI (Peripheral Component Interconnect), имеющая 64-разрядную шину данных и 32-разрядную шину адреса.

Шина управления

По шине управления передаются сиг­налы такие, например, как сигналы чтения, записи, готовности, определяющие характер обмена информацией по ма­гистрали. Сигналы управления определяют, какую операцию считывание или запись информации из памяти нужно производить, синхронизируют обмен информацией между устройствами. Кроме того, каждое внешнее устройство, которому нужно обратиться к процессору, имеет на этой шине собственную линию. Когда периферийное устройство «хочет обратиться» к процессору, оно устанавливает на этой линии специальный сигнал (сигнал прерывания), заметив который, процессор прерывает выполняемые в этот момент действия и обращается (командой чтения или записи) к устройству.

Рассмотрим в качестве примера, как процессор читает содержимое ячейки памяти (см. таблицу). Убедившись, что шина в данный момент свободна, процессор помещает на шину адреса требуемый адрес и устанавливает необходимую служебную информацию (операция – чтение, устройство – ОЗУ и т.п.) на шину управления. Теперь ему остается только ожидать ответа от ОЗУ. Последний, “увидев” на шине обращенный к нему запрос на чтение информации, извлекает содержимое необходимой ячейки и помещает его на шину данных. Разумеется, реальный процесс значительно подробнее.

Общая информация

От устройств компьютера было бы мало толку, если бы они не могли обмениваться между собой информацией. Другими словами, в распоряжении системы имеется несколько линий, которые связывают ее элементы между собой. Эти линии обена данными называют шиной (Bus).

Устрйства, подключаемые к шине, разделяются на два основных типа: bus masters и bus slaves. Bus masters — это устройства, способные управлять работой шины, то есть инициировать запись/чтение и т. п. Bus slaves — соответственно, устройства, которые могут только отвечать на запросы. Правда, есть еще intelligent slaves, но мы их пока для ясности рассматривать не будем.

Важнейшей характеристикой шины является ее разрядность, которая определяет количество данных, передаваемых по шине одновременно (за один такт). Понятно, что чем больше разрядность шины, тем больше ее производительность, хотя, правда, это и не всегда так, так как количество передаваемой в секунду информации зависит еще и от собственно ее частоты. По назначению шины можно разделить на три категории:

Шина данных

По этой шине происходит обмен дпнными между процессором, картами расширения и памятью. Особую роль здесь играет так называемый DMA-контроллер (Direct Memoy Access), через который происходит управление транспортировкой данных, минуя процессор. Такой способ хорош тем, что освобождает ресурсы CPU для других нужд. Разрядность шины данных может составлять 8 бит, 16 бит, 32 бит и так далее.

Адресная шина

Данные, которые в большом количестве кочуют по шине через материнскую плату, должны, в конце концов, сделать где-нибудь помежкточную остановку. Местом для этой остановки являются отдельные ячейки памяти. Каждая ячейка должна иметь свой адрес. Следовательно, объем памяти, который может адресовать процессор, зависит от разрядности адресной шины. Его можно вычислить по формуле:

Объем адресуемой памяти = 2 n , где n — число линий в адресной шине.

Процессор 8088, например, имел в своем распоряжении 20 адресных линий и, таким образом, мог адресовать всего 1 Mb памяти (2 20 =1048576). В компьютерах на базе процессора 80286 адресная шина была уже 24-разрядной, а процессоры 80486 имеют уже 32-разрядную шину, которая позволяет адресовать 4 им гигабайта памяти.

Шина управления

Конечно же, незачем просто транспортировать данные по шине и располагать их в памяти, если непонятно, куда их нужно переслать и какое устройство в них нуждается. Разрешение этой проблемы на себя шина контроллера, называемая также системной шиной, или шиной управления.

В качестве конечных пунктов системной шины можно рассматривать слоты расширения, интегрированные на материнскую плату контроллеры и прочее. Все эти устройства соединены между собой шиной управления. Логично предположить, что от ее производительности во многом зависит производительность всей системы, и чем больше тактовая частота и разрядность этой шины, тем лучше. Внешний вид слотов расширения, которые установлены на материнской плате, зависит именно от типа шины управления. Понятно, что, например, разъемы 32-разрядной системной шины будут отличаться от разъемов 16-разрядной шины.

Источник: Энциклопедия компьютерного железа.

Основные характеристики (разрядность, адресное пространство, быстродействие и другое) процессора компьютера;

Процессор компьютера предназначен для обработки информации. Каждый процессор имеет определенный набор базовых операций (команд), например, одной из таких операций является операция сложения двоичных чисел.

Технически процессор реализуется на большой интегральной схеме, структура которой постоянно усложняется, и количество функциональных элементов (типа диод или транзистор) на ней постоянно возрастает (от 30 тысяч в процессоре 8086 до 5 миллионов в процессоре Pentium II).

Каждый процессор имеет следующие характеристики.

1. Тактовая частота. Работа всех устройств процессора синхронизируется генератором тактовой частоты, который вырабатывает периодические импульсы. Тактовая частота равна количеству тактов в секунду. Такт – это промежуток времени между началом подачи текущего импульса и началом подачи следующего. На выполнение процессором каждой операции отводится определенное количество тактов. Чем выше тактовая частота, тем быстрее работает процессор. Тактовая частота измеряется в мегагерцах.

2. Разрядность процессора. Разрядностью называют максимальное количество разрядов двоичного кода, которые могут обрабатываться или передаваться процессором одновременно. Разрядность процессора определяется разрядностью регистров, в которые помещаются обрабатываемые данные. Например, если регистр имеет размер 4 байта, то разрядность процессора равна 8 x 4 = 32, если 8 байтов, то 64.

3. Адресное пространство. По адресной шине процессор передает адресный код – двоичное число, обозначающее адрес ячейки памяти или внешнего устройства, куда направляется информация по шине данных. Адресное пространство – это диапазон адресов, к которым может обратиться процессор, используя адресный код. Если адресный код содержит n битов, то размер адресного пространства равен 2 n байтов. Обычно размер адресного кода равен количеству линий в адресной шине. Например, если компьютер имеет 32-разрядную адресную шину, то адресное пространство его процессора равно 2 32 = 4 Гбайтов.

Читать еще:  Заменить ip адрес

Часто уточняют разрядность процессора и пишут, например, 16/20, что означает, что процессор имеет 16-разрядную шину данных и 20-разрядную шину адреса. Разрядность адресной шины определяет адресное пространство процессора, т. е. максимальный объем оперативной памяти, который может быть установлен в компьютере. Современный процессор Pentium IV имеет разрядность 64/32, т. е. его адресное пространство составляет 4 Гб.

Производительность процессора является интегральной характеристикой, которая зависит от частоты процессора, его разрядности, а также особенностей архитектуры (наличие кэш-памяти и другое). Производительность процессора нельзя вычислить, она определяется в процессе тестирования, т. е. определения скорости выполнения процессором определенных операций в какой-либо программной среде.

Основные характеристики микропроцессоров

Характеристики универсальных микропроцессоров:

1. Разрядность (мощность) — определяется максимальной разрядностью целочисленных данных, обрабатываемых за 1 такт, то есть фактически разрядностью арифметико-логического устройства (АЛУ). Количество бит в машинном слове называется разрядностью. Чем больше разрядность, т.е. чем длиннее машинное слово, тем быстрее передаётся и обрабатывается информация, тем быстрее работает компьютер.

Применительно к микропроцессору, различают три вида разрядности:

1. Разрядность регистров микропроцессора;

2. Разрядность шины данных;

3. Разрядность шины адреса.

Разрядность регистров — это длина машинного слова внутри микропроцессора. Разрядность этого вида диктуется вместимостью внутренних ячеек памяти процессора- вместимостью регистров. Когда классифицируют микропроцессор и употребляют термин «разрядность микропроцессора», то подразумевается внутренняя разрядность, поскольку именно разрядность регистров определяет эффективность обработки данных микропроцессором, диктует диапазон допустимых значений операндов.

Разрядность шины данных. Под шиной данных понимается группа проводников, по которым от микропроцессора к другим устройствам компьютера передаются данные. Разрядность шины данных – это число проводников в ней. Этот вид разрядности диктует длину машинных слов при передаче информации вне процессора, т.е. это длина «внешнего машинного слова». Длина машинных слов внутри микропроцессора и длина внешнего машинного слова могут не совпадать. Например, первый микропроцессор, устанавливавшийся на персональный компьютер IBM PC (Intel 8088), имел внутреннюю разрядность 16 бит, а длину внешнего машинного слова — всего 8 бит. В его современнике Intel 8086 длина внешнего машинного слова была увеличена до размеров разрядности регистров, т.е. до 16 бит, что дало прирост производительности микропроцессора на 40% при той же тактовой частоте. Схожее несовпадение разрядности компания Intel применила на микропроцессоре 80386SX, а также на всех процессорах Pentium (исключая последние 64-разрядные).

Разрядность шины адреса — это число проводников в адресной шине. По этим проводникам от микропроцессора к оперативной памяти передаётся информация для определения ячеек памяти, к которым надо получить доступ. Чем шире шина адреса, тем к большему числу ячеек памяти может адресовываться микропроцессор. Адресное пространство микропроцессора, т.е. наибольший теоретически возможный размер оперативной памяти, доступный для данного микропроцессора, определяется величиной 2 n , где n- разрядность адресной шины.

Например, у Intel 8088 и Intel 8086 адресная шина имела 20 проводников. Наибольший размер оперативной памяти у компьютеров с таким микропроцессором был не более 2 20 = 1048 000 байт, т.е. 1 Мбайт. У процессора следующего поколения, Intel 80286, была 24-разрядная шина адреса, что увеличило максимум адресуемой оперативной памяти до 16 Мб. Начиная с Intel 80386, микропроцессоры Intel длительное время имели 32-битную шину адреса и соответственно адресное пространство 4 Гб.

2. Тип ядра и технология производства. Технология определяется толщиной минимальных элементов процессора, — чем более «тонкой» становится технология, тем больше транзисторов может уместиться на кристалле. Кроме этого, переход на новую технологию помогает снизить энергопотребление и тепловыделение процессора, что очень важно для его стабильной работы.

Переход на новую технологию, как правило, влечет за собой и смену процессорного «ядра»

3. Производительность — Производительность процессора измеряется во Флопсах. Флопс — это количество элементарных операций (тактов) выполняемых за 1 секунду с плавающей запятой. Флопс бывает: 1 Флопс = 10 (нулевая степень), 1 Килофлопс = 10*** степени, 1 Мегафлопс = 10****** степени, 1 Гигафлопс = 10********* степени, 1 Террафлопс = 10************ степени.

Пусть у нас имеется процессор AMD Athlon Core 2/3,5 HHz, пусть процессор выполняет 4 операции за 1 такт времени в каждом ядре, вычислим его производительность: 4 х 4 х 3,5 ГГц = 56 (Гигафлопс) или 56 миллиардов операций в 1 секунду.

Надо помнить, что количество тактов выполняемых процессором не всегда совпадает с фактическим количеством операций в 1 секунду!

И вот почему:

1) для выполнения многих математических операций процессору требуется несколько тактов,

2) конкретное количество операций зависит от типа процессора (чем выше тип, тем меньше требуется количество тактов на выполнение операций),

3) компоненты физической схемы компьютера влияют на скорость выполнения,

4) быстродействие в основном определяется тактовой частотой процессора, чем она выше, тем больше скорость выполнения операций в 1 секунду!

4. Тактовая частота (быстродействие) — процессора или такт ядра процессора — промежуток между двумя импульсами тактового генератора, который синхронизирует выполнение всех операций процессора. Самый важный показатель, определяющий скорость работы процессора. Тактовая частота, измеряемая в мегагерцах (МГц) и гигагерцах (ГГц), обозначает лишь то количество циклов, которые совершает работающий процессор за единицу времени (секунду).

Выполнение различных элементарных операций может занимать от долей такта до многих тактов в зависимости от команды и процессора. Общая тенденция заключается в уменьшении количества тактов, затрачиваемых на выполнение элементарных операций.

5. Объем кэш-памяти, которая имеет два уровня: L1 – память 1-го уровня, находящаяся внутри основной микросхемы микропроцессора и работающая всегда на полной частоте микропроцессора; L2 – память 2-го уровня, кристалл, размещаемый на плате микропроцессора и связанный с ядром внутренней микропроцессорной шиной, может работать на полной или половинной частоте микропроцессора.

6. Архитектура МП. Понятие архитектуры микропроцессора включает в себя систему команд и способы адресации, возможность совмещения выполнения команд во времени, наличие дополнительных устройств в составе микропроцессора, принципы и режимы его работы. Выделяют понятия микроархитектуры и макроархитектуры.

Микроархитектура микропроцессора – это аппаратная организация и логическая структура микропроцессора, регистры, управляющие схемы, арифметико-логические устройства, запоминающие устройства и связывающие их информационные магистрали.

Макроархитектура – это система команд, типы обрабатываемых данных, режимы адресации и принципы работы микропроцессора.

Шина данных. разрядность шины

Шину данных образуют линии, служащие для передачи данных между отдельными структурными группами ПК. Исходным пунктом линий данных является центральный процессор. Он определяет разрядность шины данных, т.е. число линий, по которым передаются данные. Чем выше разрядность шины данных, тем больший объем данных можно передать по ней за некоторый определенный промежуток времени и тем выше быстродействие компьютера.

Читать еще:  Восстановление mac адреса

В первых ПК использовался процессор Intel 8088. Этот 16-разрядный процессор имел всего лишь 8 внешних линий данных (этим объясняется его низкая стоимость). Для внутренних операций было задействовано 16 линий данных, благодаря чему процессор мог одновременно обрабатывать два восьмиразрядных числа. Но на внешнем уровне к нему присоединялась дешевая восьмиразрядная шина данных. Эти 8 линий обеспечивали связь со всеми микросхемами на системной плате, выполняющими функции обработки данных, и всеми платами расширения, установленными в гнездах. Таким образом осуществлялась передача данных между платами расширения и процессором.

Современные процессоры допускают внешнее подключение большего числа линий данных: процессор 80286 — 16 линий данных, процессоры 80386 DX и 80486 DX — 32 линии, а процессор Pentium — 64 линии данных.

Адресная шина. Разрядность шины

Другая группа линий образует адресную шину. Эта шина используется для адресации. Каждая ячейка памяти и устройство ввода-вывода компьютера имеет свой собственный адрес.

При считывании или записи данных процессор должен сообщать, по какому адресу он желает прочитать или записать данные, для чего необходимо указать этот адрес.

В отличие от шины данных шина адреса является однонаправленной.

Разрядность адресной шины определяет максимальное число адресов, по которым может обратиться процессор, т. е. число линий в адресной шине показывает, каким объемом памяти может управлять процессор. Учитывая, что одна адресная линия обеспечивает представление одного разряда двоичного числа, формулу для максимального объема адресуемой памяти можно записать в следующем виде:

максимальное число адресов = 2n,

где n — разрядность адресной шины.

Процессор 8088 имел 20 адресных линий, что в соответствии с приведенной формулой обеспечивало адресацию памяти объемом:

220 =1 048 576 байт = 1024 Кбайт = 1 Мбайт.

Это тот самый предельный объем памяти, который все еще имеет силу в операционной системе DOS.

Совсем иная ситуация с процессором 80286. Он имеет 24 адресных линии и поэтому в состоянии управлять памятью объемом:

224= 16 777 216 байт =16 Мбайт.

Для обеспечения связи с микросхемами памяти число адресных линий процессора должно равняться числу адресных линий на системной плате.

Процессоры 80386, 80486 и Pentium имеют 32 адресных линии, что обеспечивает адресацию свыше 4 млрд. ячеек памяти. На системной плате с такими процессорами должно быть 32 линии, обеспечивающие обмен адресами между центральным процессором и всеми важными периферийными микросхемами.

Линии шины управления на системной плате служат для управления различными компонентами ПК. По выполняемой ими функции их можно сравнить с переводной стрелкой на железнодорожных путях.

С помощью небольшого числа линий шина управления обеспечивает такое функционирование системы, чтобы в каждый данный момент времени только одна структурная единица ПК пересылала данные по шине данных или осуществляла адресацию памяти.

К шине может быть подключено много приемных устройств. Сочетание управляющих и адресных сигналов определяет, для кого именно предназначаются данные на шине. Управляющая логика возбуждает специальные стробирующие сигналы, чтобы указать получателю, когда ему следует принимать данные.

Управляющая логика активизирует в каждый конкретный момент только одно устройство, которое становиться ведущим. Когда устройство активизировано, оно помещает свои данные на шину. Все другие микросхемы в этот промежуток времени должны блокироваться с помощью соответствующего сигнала на линии управления.

Микропроцессор взаимодействует с внешней средой с помощью шины адреса/данных/состояния и нескольких управляющих сигналов. Собственно взаимодействие заключается в выполнении одной из двух операций: МП либо выводит (записывает) данные, либо вводит (считывает) данные или команды. В каждой из этих операций процессор должен указывать то устройство, с которым он будет взаимодействовать; другими словами, процессор должен адресовать ячейку памяти либо порт ввода или вывода.

Для передачи данных или выборки команды процессор инициирует так называемый цикл шины. Кроме процессора, цикл шины могут инициировать и другие устройства, например, арифметический сопроцессор.

Цикл шины представляет собой последовательность событий, в течение которой процессор выдает адрес ячейки памяти или периферийного устройства, а затем формирует сигнал записи или считывания, а также выдает данные в операции записи. Выбранное устройство воспринимает данные с шины в цикле записи или помещает данные на шину в цикле считывания. По окончании цикла шины устройство фиксирует записываемые данные или снимает считываемые данные.

Рассмотрим цикл шины микропроцессора 8086, который имеет совмещенную 20-разрядную шину адреса/данных/состояния и шину управления (рис. 4).

Рис. 4. Шины микропроцессора 8086

Цикл шины микропроцессора 8086 состоит минимум из четырех тактов синхронизации, называемых также состояниями T, которые идентифицируются спадающим фронтом сигнала синхронизации CLC. В первом такте (T1) процессор выдает на шину адреса/данных/состояния AD20-AD0 адрес устройства, которое будет источником или получателем информации в текущем цикле шины. Во втором такте (T2) процессор снимает адрес с шины и либо переводит тристабильные буферы линий AD15-AD0 в высокоимпедансное состояние, подготавливая их к выводу информации в цикле считывания, либо выдает на них данные в цикле записи.

Управляющие сигналы, инициирующие считывание, запись или подтверждение прерываний, всегда выдаются в такте T2. В максимальной конфигурации системы сигнал записи формируется в такте T3, чтобы гарантировать стабилизацию сигналов данных до начала действия этого сигнала.

В такте T2 старшие четыре линии адреса/состояния переключаются с режима выдачи адреса на режим выдачи состояния. Сигналы состояния предназначены в основном для диагностических целей, например, идентифицируют сегментный регистр, который участвует в формировании адреса памяти.

В течение такта T3 процессор сохраняет информацию на линиях состояния. На шине данных в цикле записи сохраняются выводимые данные, а в цикле считывания производится опрос вводимых данных.

Тактом T4 заканчивается цикл шины. В этом такте снимаются все управляющие сигналы и выбранное устройство отключается от шины.

Таким образом, цикл шины для памяти или периферийного устройства представляет собой асинхронное действие. Устройство может управлять циклом шины только путем введения состояний ожидания.

Процессор выполняет цикл шины в том случае, когда ему необходимо осуществить запись или считывание информации. Если циклы шины не требуются, шинный интерфейс реализует холостые состояния Ti, в течение которых процессор сохраняет на линиях состояния сигналы состояния от предыдущего цикла шины.

Статьи к прочтению:

Как выбрать видеокарту. Или почему шина 256 бит — не рулит. (см. описание)

Похожие статьи:

Современные устройства радиоэлектронной техники используют большое число микросхем, что требует много линий для адресации, выбора и управления их…

Шины микропроцессорной системы и циклы обмена Самое главное, что должен знать разработчик микропроцессорных систем — это принципы организации обмена…

Ссылка на основную публикацию
Adblock
detector