Remkomplekty.ru

IT Новости из мира ПК
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Порядок ip адреса

Правила назначения IP адресов.

Дата добавления: 2013-12-23 ; просмотров: 9231 ; Нарушение авторских прав

Частные IP-адреса

В отличие от глобальных хостов Интернета, требующих уникальных IP-адресов, для частных хостов, не подключенных к сети Интернет, можно использовать любые адреса при условии их уникальности в рамках частной сети. Однако поскольку множество частных сетей существует параллельно с публичными сетями, захват «первых попавшихся» адресов категорически не рекомендуется.

В 1994 году сообщество IETF опубликовало документ RFC 1597, в котором утверждалось, что многие организации, использующие TCP/IP и IP-адресацию, не подключены к Интернету. Вслед за RFC 1597 был опубликован документ RFC 1918, в котором предлагалось выделить блок доступного пространства IP-адресов для частных сетей. Частные сети, в которых протокол IP необходим для поддержки приложений, но нет необходимости в подключении к Интернету, могут просто использовать адреса из выделенного диапазона для частного применения.

Для частного, внутреннего использования было выделено три блока IP-адресов (одна сеть класса А, 16 сетей класса В и 256 сетей класса С). Адреса из этого диапазона не подлежат маршрутизации в магистральной сети Интернет (см. рисунок 6). Маршрутизаторы Интернета настроены на отбрасывание пакетов с частными адресами.

При адресации во внутренней, не публичной сети эти частные адреса могут использоваться вместо общедоступных адресов.

Если сеть, использующая частные адреса, должна подключаться к Интернету, необходимо преобразовать частные адреса в адреса общего пользования. Таким процессом преобразования является NAT. Сетевым устройством, осуществляющим преобразование NAT, как правило, служит маршрутизатор.

Рис.6 Диапазоны частных IP-адресов

Из рассмотренного ранее материала известно, что для взаимодействия с использование протокола Internet Protocol необходимо, чтобы IP адреса были назначены каждому сетевом интерфейсу узла и каждому сетевому интерфейсу маршрутизатора. При этом необходимо придерживаться следующих обязательных правил:

• Адреса не должны дублироваться: IP адрес – уникальный идентификатор узла или порта маршрутизатора

• Если узлы и порты маршрутизаторов находятся в одной канальной сети, то они должны иметь такие IP адреса, которые принадлежать одной IP сети

• Если узлы и порты маршрутизаторов находятся в разных канальных сетях, то они должны иметь такие IP адреса, которые принадлежать разным IP сетям

Первое правило – очевидно. Рассмотрим подробнее второе и третье правило.

Когда узел передает данные другому узлу, он не знает, в одной канальной сети он с ним находится или в разных сетях. Единственное, что знает отправитель пакета о получателе, это его IP адрес, кроме того, отправитель пакета знает свой IP адрес. Из своего адреса отправитель может узнать номер своей сети, пользуясь техникой классов, из IP адреса получателя отправитель может узнать номер его сети: если они совпадают – значит два узла в одной IP сети, значит можно передавать кадр канального уровня непосредственно получателю, иначе его необходимо передавать маршрутизатору.

Если два узла будут находиться в разных канальных сетях, но иметь адреса из одной IP сети, то отправитель подумает, что получатель с ним в одной канальной сети, пошлет ему кадр канального уровня, который, очевидно не будет получен.

И обратное если отправитель и получатель находятся в одной канальной сети, но их IP адреса заданы таким образом, что отправитель думает, что они в разных канальных сетях, то вместо передачи кадра непосредственно получателю, кадр будет передан маршрутизатору, что в худшем случае приведет к невозможности доставки IP пакета.

То же касается и маршрутизаторов: из канальных адресов узлов не следует ничего об их принадлежности к той или иной сети, лишь IP адреса позволяют маршрутизаторам делать выводы о составе КАНАЛЬНЫХ сетей, и соответственно IP адреса должны быть назначены таким образом, чтобы отражать, кто из узлов принадлежит какой канальной сети.

Рассмотрим пример назначения IP адресов в небольшой сети, используя указанные выше правила:

Пусть у нас есть небольшое предприятие, имеющее офис в центре города и подразделение на окраине. Очевидно, что построить одну канальную сеть, охватывающую все узлы предприятия невозможно, для решения задачи нам потребуется привлечение средств третьего уровня. В главном офисе сеть разделена на две сети Ethernet, так как того требует политика безопасности, сеть склада состоит из единственной сети Ethernet. В офисе и на складе установлены маршрутизаторы, которые связаны между собой арендованным каналом. Задача – адресовать эту сеть. Нам понадобиться присвоить адреса всем узлам и портам маршрутизаторов данной составной сети в соответствии с рассмотренной выше стратегией.

В качестве адресов сетей нужно выбрать адреса класса C, так как все наши сети имеют размер меньше 254 узлов. Обратите внимание – использование адресного пространства в данном случае не является рациональным, так как три наши сети содержат всего по четыре узла (+порт маршрутизатора), но более мелких IP сетей в классовой , нежели размером 254 узла не существует. Впрочем, при добавлении новых узлов в наши сети у нас не будет проблем с присвоением IP адресов новым узлам. И еще одни нюанс -глобальная связь между маршрутизаторами – это тоже сеть и тоже нуждается в адресации, но в ней по определению два узла, однако она тоже потребляет сеть класса С.

Итак, результатом назначение адресов стали четыре сети класса С, присвоим им соответствующие номера 201.1.1.0, 201.1.2.0, 201.1.3.0 и 201.1.4.0.

Пусть сеть на коммутаторе Switch1 получает номер 201.1.1.0. В этой сети необходимо присвоить 5 адресов: порту маршрутизатора и четырем узлам.

Впредь договоримся присваивать портам маршрутизаторов младшие адреса узлов (это не является обязательным условием — просто обычная договоренность для удобства).

Т.е. присвоим порту маршрутизатора Router1, который подключен к коммутатору Switch1 адрес 201.1.1.1. Узлам можно присвоить адреса:

Пусть сеть на коммутаторе Switch2 получает номер 201.1.2.0. И в этой сети необходимо присвоить 5 адресов: порту маршрутизатора и четырем узлам. Присвоим порту маршрутизатора Router2, который подключен к коммутатору Switch2 адрес 201.1.2.1. Тогда узлам можно присвоить адреса:

Пусть сеть на коммутаторе Switch3 получает номер 201.1.3.0. И в этой сети необходимо присвоить 5 адресов: порту маршрутизатора и четырем узлам. Присвоим порту маршрутизатора Router2, который подключен к коммутатору Switch3 адрес 201.1.3.1. Тогда узлам можно присвоить адреса:

Глобальной сети между маршрутизаторами Router1 и Router2 присвоим номер сети 201.1.4.0. Порт маршрутизатора Router1 в этой сети получит адрес 201.1.4.1, порт маршрутизатора Router2 в этой сети получит номер 201.1.4.2.

Таким образом, вся составная сеть адресована. Рассмотренный выше набор правил является базовым для присвоения адресов в сети любого масштаба и схемы подключения канального уровня. В случае несоблюдения указанных рекомендаций, работа сетевого уровня может быть нарушена вследствие различий логики протокола IP и логики используемой администратором при назначении адресов.

Например, в случае присвоения хостам лежащим в разных канальных широковещательных сегментах адресов IP лежащих в одной сети – работа сетевого уровня по объединению указанных хостов нарушиться. Исправить ситуацию, в этом случае можно двумя путями: назначить адреса в соответствии с рекомендациями или дополнить таблицу маршрутизации на каждом из хостов + таблицу на маршрутизаторе (но это уже из области особых ситуаций).

Из рассмотренного выше примера следуют недостатки классовой техники (RFC791) назначения IP адресов. Сформулируем основные из этих недостатков:

• Небольшие сети (20-100 машин) потребляют идентификатор класса C, который позволяет адресовать до 254 узлов

• Умеренно большие сети (300-500 машин) потребляют идентификатор класса B так как им не хватает размера сетей класса А, а сети класса В позволяют адресовать до 65534 узлов

• Глобальные сети точка-точка (2 узла) потребляют идентификатор класса C, так как более мелких сетей классовая техника все равно не позволяет

• Потребность в сетях класса В сомнительна – такого числа узлов обычно не используют в одной сети

• Потребность в сетях класса А сомнительна – такого числа узлов никогда не используют в одной сети

• Слишком большая доля адресного пространства используется для гигантских сетей класса A (половина)

• Пусть у компании есть идентификатор сети любого класса и одна сеть из некоторого небольшого количества узлов. При необходимости создать еще несколько сетей, соединив их маршрутизаторами, это не возможно сделать без применения дополнительных номеров сетей, так как одна большая IP сеть некоторого класса не может быть использована как несколько мелких.

Все эти недостатки приводят к одному и тому же – нерациональному использованию адресного пространства, неэффективному расходованию адресов. Все эти недостатки были бы не принципиальны, если бы адресное пространство IP было бы весьма избыточным. Однако, как уже говорилось, это не так, напротив, IP адресов не слишком уж и много (около 4 млрд.).

Но при этом нужно вычесть 256 млн. адресов класса D, 256 млн. адресов класса E, 32 млн. адресов в сетях 0.0.0.0 и 127.0.0.1, так что адресов, которые можно присваивать узлам оказывается около 3,5 млрд.

Это число не так уж и мало, однако неэкономичное классовое распределение адресов значительно истощило доступное адресное пространство, возникла потребность в более гибком способе адресации, впрочем, таком, который бы можно было использовать, совместно с существующей классовой технологией, не переделывая работающие сети полностью. И такое решение было предложено в RFC917 (октябрь 1984) и в RFC950 (август 1985, статус: стандарт). Эти RFC описывали принципы создания подсетей – деления классовых сетей на более мелкие части с целью более гибкого использования адресного пространства. Указанные действия осуществляются с использованием масок IP адресов.

Как работают IP-адреса

К аждое устройство, подключенное к сети — компьютер, планшет, камера и т. д. — нуждается в уникальном идентификаторе, чтобы другие устройства знали, как к нему обратиться. В мире TCP/IP сетей этим идентификатором является IP-адрес.

Вы, вероятно, сталкивались с IP-адресами — числовыми последовательностями, которые выглядят примерно как 192.168.0.1. Большую часть времени пользователям не приходится иметь дело с ними напрямую, поскольку устройства и сети работают с ними кулисами. Когда нам приходится иметь дело с ними, мы часто просто следуем инструкциям о том, какие цифры ставить и где. Но если Вы когда-нибудь хотели немного углубиться в смысл этих цифр, эта статья для Вас.

Понимание того, как работают IP-адреса, важно, если Вы когда-нибудь захотите выяснить, почему Ваша сеть работает неправильно или почему конкретное устройство не подключается так, как Вы этого ожидаете. И, если Вам когда-нибудь понадобится настроить что-то более продвинутое — например, хостинг игрового сервера или медиа-сервера, к которому могут подключиться друзья из Интернета, Вам нужно будет кое-что узнать об IP-адресации. Плюс, это довольно увлекательно.

Примечание: в этой статье мы расскажем об основах IP-адресации. Мы не собираемся рассказывать о более продвинутых или профессиональных вещах, таких как классы IP, бесклассовая маршрутизация и пользовательские подсети, но мы укажем некоторые источники для дальнейшего чтения.

Что такое IP-адрес

IP-адрес уникально идентифицирует устройство в сети. Вы видели эти адреса раньше, они выглядят как 192.168.1.34.

IP-адрес — это набор из четырех чисел. Каждое число может находиться в диапазоне от 0 до 255. Таким образом, полный диапазон IP-адресов варьируется от 0.0.0.0 до 255.255.255.255.

Причина, по которой каждое число может достигать только 255, состоит в том, что каждое из них на самом деле представляет собой восьмизначное двоичное число (иногда называемое октетом). В октете нулевое число будет 00000000, а 255 будет 11111111, максимальное число, которое может достигнуть октет. Тот IP-адрес, который мы упоминали ранее (192.168.1.34) в двоичном виде, будет выглядеть следующим образом: 11000000.10101000.00000001.00100010.

Компьютеры работают с двоичным форматом, но нам, людям, гораздо проще работать с десятичным форматом. Однако знание того, что адреса на самом деле являются двоичными числами, поможет нам понять, почему некоторые вещи, связанные с IP-адресами, работают так, а не иначе.

Читать еще:  Пинг ip адреса

Две части IP-адреса

IP-адрес устройства фактически состоит из двух отдельных частей:

  • Идентификатор сети: Идентификатор сети является частью IP-адреса, начинающегося слева, который идентифицирует конкретную сеть, в которой находится устройство. В типичной домашней сети, где устройство имеет IP-адрес 192.168.1.34, часть адреса 192.168.1 будет идентификатором сети. Пропущенную заключительную часть принято заполнять нулем, поэтому можно сказать, что сетевой идентификатор устройства — 192.168.1.0.
  • Идентификатор хоста: Идентификатор хоста является частью IP-адреса, не занятого идентификатором сети. Он идентифицирует конкретное устройство (в мире TCP/IP мы называем устройства «хостами») в этой сети. Продолжая наш пример IP-адреса 192.168.1.34, идентификатор хоста будет 34 — уникальный идентификатор хоста в сети 192.168.1.0.

В Вашей домашней сети Вы можете увидеть несколько устройств с IP-адресами, такими как 192.168.1.1, 192.168.1.2, 192.168.1.30 и 192.168.1.34. Все это уникальные устройства (с идентификаторами хостов 1, 2, 30 и 34 в данном случае) в одной сети (с идентификатором сети 192.168.1.0).

Чтобы представить все это немного лучше, давайте обратимся к аналогии. Это очень похоже на то, как работают уличные адреса в городе. Возьмите адрес, например, ул. Гагарина 108. Название улицы похоже на идентификатор сети, а номер дома — на идентификатор хоста. В пределах города никакие две улицы не будут названы одинаково, точно так же, как никакие два идентификатора сети в одной и той же сети не будут названы одинаково. На определенной улице каждый номер дома уникален, точно так же как все идентификаторы хоста в пределах определенного идентификатора сети уникальны.

Маска подсети

Итак, как Ваше устройство определяет, какая часть IP-адреса является идентификатором сети, а какая — идентификатором хоста? Для этого они используют второй номер, который Вы всегда увидите в связи с IP-адресом. Этот номер называется маской подсети.

В большинстве простых сетей (например, в домах или на небольших предприятиях) Вы увидите маски подсетей, такие как 255.255.255.0, где все четыре числа — либо 255, либо 0. Положение изменений от 255 до 0 указывает на разделение между идентификатор сети и хоста. 255 «маскируют» идентификатор сети.

Примечание: Базовые маски подсетей, которые мы здесь описываем, известны как маски подсетей по умолчанию. Люди часто используют пользовательские маски подсетей (где позиция разрыва между нулями и единицами смещается в пределах октета) для создания нескольких подсетей в одной сети. Это немного выходит за рамки этой статьи, но если вам интересно, у Cisco есть довольно хорошее руководство по подсетям.

В дополнение к самому IP-адресу и соответствующей маске подсети Вы также увидите в списке адрес шлюза по умолчанию и информацию об IP-адресации. В зависимости от платформы, которую Вы используете, этот адрес может называться как-то иначе. Иногда его называют «маршрутизатор», «адрес маршрутизатора», «маршрут по умолчанию» или просто «шлюз». Это одно и то же. Это IP-адрес по умолчанию, на который устройство отправляет сетевые данные, когда эти данные предназначены для передачи в другую сеть (с другим идентификатором сети), чем та, на которой включено устройство.

Простейший пример этого можно найти в типичной домашней сети.

Если у Вас есть домашняя сеть с несколькими устройствами, скорее всего, у Вас есть маршрутизатор, который подключен к Интернету через модем. Этот маршрутизатор может быть отдельным устройством или частью комбинированного устройства модем/маршрутизатор, предоставленного Вашим интернет-провайдером. Маршрутизатор находится между компьютерами и устройствами в Вашей сети и общедоступными устройствами в Интернете, передавая (или маршрутизируя) трафик туда и обратно.

Допустим, Вы запустили свой браузер и отправились на guidepc.ru. Ваш компьютер отправляет запрос на IP-адрес нашего сайта. Поскольку наши серверы находятся в Интернете, а не в Вашей домашней сети, этот трафик отправляется с Вашего ПК на Ваш маршрутизатор (шлюз), и Ваш маршрутизатор направляет запрос на наш сервер. Сервер отправляет нужную информацию обратно на Ваш маршрутизатор, который затем направляет информацию обратно на устройство, которое ее запросило, и Вы видите наш сайт, открывшийся в Вашем браузере.

Как правило, маршрутизаторы по умолчанию настроены на использование своего частного IP-адреса (своего адреса в локальной сети) в качестве первого идентификатора хоста. Так, например, в домашней сети, которая использует 192.168.1.0 для идентификатора сети, адрес маршрутизатора обычно будет 192.168.1.1. Конечно, как и большинство вещей, Вы можете настроить его по-другому, если хотите.

DNS-серверы

Есть еще одна информация, которую Вы увидите назначенной вместе с IP-адресом устройства, маской подсети и адресом шлюза по умолчанию: адреса одного или двух серверов DNS по умолчанию. Мы, люди, работаем намного лучше с именами, чем с числовыми адресами. Ввести guidepc.ru в адресную строку Вашего браузера гораздо проще, чем запомнить и ввести IP-адрес нашего сайта.

DNS работает как телефонная книга, ищет удобочитаемые вещи, такие как имена веб-сайтов, и конвертирует их в IP-адреса. DNS делает это, сохраняя всю эту информацию в системе связанных DNS-серверов через Интернет. Вашим устройствам необходимо знать адреса DNS-серверов, на которые следует отправлять свои запросы.

В типичной небольшой или домашней сети IP-адреса DNS-сервера часто совпадают с адресами шлюза по умолчанию. Устройства отправляют свои DNS-запросы Вашему маршрутизатору, который затем перенаправляет запросы на DNS-серверы, на которые маршрутизатор настроен для использования. По умолчанию это обычно те DNS-серверы, которые предоставляет Ваш интернет-провайдер, но Вы можете изменить их на другие DNS-серверы, если хотите. Иногда Вы можете добиться большего успеха, используя DNS-серверы, предоставляемые третьими сторонами, такими как Google или OpenDNS.

В чем разница между IPv4 и IPv6

Вы также, возможно, заметили, просматривая настройки другой типа IP-адреса, называемого IPv6-адресом. Типы IP-адресов, о которых мы говорили до сих пор, — это адреса, используемые в IP версии 4 (IPv4) — протоколе, разработанном в конце 70-х годов. Они используют 32 двоичных разряда, о которых мы говорили (в четырех октетах), чтобы обеспечить в общей сложности 4,29 миллиарда возможных уникальных адресов. Хотя это звучит как много, все общедоступные адреса давно были зарезервированы для бизнеса. Многие из них не используются, но они зарезервированы и недоступны для общего пользования.

В середине 90-х, обеспокоенная потенциальной нехваткой IP-адресов, Инженерная рабочая группа по Интернету (IETF) разработала IPv6. IPv6 использует 128-битный адрес вместо 32-битного адреса IPv4, поэтому общее количество уникальных адресов измеряется в миллиардах — это число достаточно велико, и все адреса вряд ли когда-нибудь закончатся.

В отличие от десятичной записи, используемой в IPv4, адреса IPv6 выражаются в виде восьми числовых групп, разделенных двоеточиями. Каждая группа имеет четыре шестнадцатеричные цифры. Типичный адрес IPv6 может выглядеть примерно так:

Дело в том, что нехватка адресов IPv4, которая вызвала опасения, в конечном итоге была в значительной степени уменьшена за счет более широкого использования частных IP-адресов за маршрутизаторами. Все больше и больше людей создают свои собственные частные сети, используя те частные IP-адреса, которые не предоставляются публично.

Таким образом, даже несмотря на то, что переход на IPv6 по-прежнему будет происходить, он никогда не происходил так быстро, как прогнозировалось — по крайней мере, пока. Если Вы заинтересованы в получении дополнительной информации, ознакомьтесь с этой историей и временной шкалой IPv6.

Как устройство получает свой IP-адрес

Теперь, когда Вы знаете основы работы IP-адресов, давайте сначала поговорим о том, как устройства получают свои IP-адреса. На самом деле существует два типа назначений IP: динамический и статический.

Динамический IP-адрес назначается автоматически при подключении устройства к сети. Для этого в подавляющем большинстве современных сетей (включая Вашу домашнюю сеть) используется протокол динамической конфигурации хоста (DHCP). DHCP встроен в Ваш роутер. Когда устройство подключается к сети, оно отправляет широковещательное сообщение с запросом IP-адреса. DHCP перехватывает это сообщение, а затем назначает IP-адрес этому устройству из пула доступных IP-адресов.

Для этой цели существуют определенные диапазоны частных IP-адресов. То, что используется, зависит от того, кто сделал Ваш роутер, или как Вы настроили его самостоятельно.

Дело в том, что динамические адреса иногда меняются. DHCP-серверы сдают в аренду IP-адреса устройствам, и когда срок аренды истекает, устройства должны возобновлять аренду. Иногда устройства получают другой IP-адрес из пула адресов, которые может назначить сервер.

В большинстве случаев это не имеет большого значения, и все будет «просто работать». Однако иногда Вам может потребоваться присвоить устройству IP-адрес, который не изменяется. Например, возможно, у Вас есть устройство, к которому Вам нужно получить доступ вручную, и Вам легче запомнить IP-адрес, чем имя. Или, может быть, у Вас есть определенные приложения, которые могут подключаться только к сетевым устройствам, используя их IP-адрес.

В этих случаях Вы можете назначить статический IP-адрес этим устройствам. Есть несколько способов сделать это. Вы можете вручную настроить устройство со статическим IP-адресом, хотя иногда это может быть затруднительным. Другое, более элегантное решение — настроить маршрутизатор для назначения статических IP-адресов определенным устройствам во время динамического назначением DHCP-сервером. Таким образом, IP-адрес никогда не меняется, но Вы не прерываете процесс DHCP, который обеспечивает бесперебойную работу.

Как устроен IP-адрес – главный идентификатор в мире сетей TCP/IP

Если вы работали с компьютерами какое-то время, то, вероятно, сталкивались с IP-адресами – эти числовые последовательности, которые выглядят примерно как 192.168.0.15. В большинстве случаев нам не нужно иметь дело с ними напрямую, поскольку наши устройства и сети заботятся об их обработке «за кулисами». Когда же нам приходится иметь с ними дело, мы часто просто следуем инструкциям о том, какие и где вписать цифры. Но, если вы когда-либо хотели погрузиться немного глубже в то, что означают эти цифры, эта статья для вас.

Зачем вам это нужно? Понимание того, как работают IP-адреса, жизненно важно, если вы когда-нибудь захотите устранить неполадки в вашей домашней сети или понять, почему конкретное устройство не подключается так, как вы ожидаете. И если вам когда-либо понадобится создать нечто более продвинутое, такое как хостинг игрового сервера или медиа-сервер, к которому могут подключаться друзья из интернета, вам нужно будет что-то знать об IP-адресации. Плюс, это немного увлекательно.

В этой статье мы расскажем об основах IP-адресации, о том, что хотели бы знать люди, которые используют IP-адреса, но никогда не задумывались об их структуре. Мы не собираемся освещать некоторые из более продвинутых или профессиональных уровней, таких как классы IP, бесклассовая маршрутизация и пользовательская подсеть. но вы легко найдёте источники для дальнейшего чтения.

Что такое IP-адрес

IP-адрес однозначно идентифицирует устройство в сети. Вы видели эти адреса раньше; они выглядят примерно как 192.168.1.34.

IP-адрес всегда представляет собой набор из четырех таких чисел. Каждый номер может находиться в диапазоне от 0 до 255. Таким образом, полный диапазон IP-адресов составляет от 0.0.0 до 255.255.255.255.

Причина, по которой каждый номер может достигать 255, заключается в том, что каждое из чисел представляет собой восьмизначное двоичное число (иногда называемое октетом). В октете число ноль будет обозначено как 00000000, а число десятичное 255 будет иметь вид 11111111, – это максимальное число, которого мы можем достигнуть в рамках октета. IP-адрес, упомянутый выше (192.168.1.34) в двоичном формате, будет выглядеть так: 11000000.10101000.00000001.00100010 .

Компьютеры работают с двоичным форматом, но нам, людям, гораздо проще работать с десятичным форматом. Тем не менее, зная, что адреса фактически являются двоичными числами, нам легче будет понять, почему некоторые вещи, связанные с IP-адресами, работают так, как они это делают.

Две базовые части IP-адреса

IP-адрес устройства состоит из двух отдельных частей:

  • Идентификатор сети: является частью IP-адреса; начинаются слева и идентифицирует конкретную сеть, на которой расположено устройство. В обычной домашней сети, где устройство имеет IP-адрес 192.168.1.34, часть 192.168.1 будет идентификатором сети. Если заполнить недостающую конечную часть нулём, мы можем сказать, что сетевой идентификатор устройства – 192.168.1.0.
  • Идентификатор хоста: это часть IP-адреса, не занятого сетевым идентификатором. Он идентифицирует конкретное устройство (в мире TCP/IP устройства называют «хостами») в этой сети. Продолжая наш пример IP-адреса 192.168.1.34, идентификатором хоста будет 34 – уникальный идентификатор устройства в сети 192.168.1
Читать еще:  Как подключиться к мак адресу

Чтобы представить всё это немного лучше, давайте обратимся к аналогии. Это очень похоже на то, как уличные адреса работают в городе. Возьмите адрес, такой как Набережная 29/49. Название улицы похоже на идентификатор сети, а номер дома похож на идентификатор хоста. Внутри города никакие две улицы не будут называться одинаково, так же как ни один идентификатор сети в одной сети не будет назван одинаковым. На определенной улице каждый номер дома уникален, так же как все ID хоста в определенном сетевом идентификаторе.

Маска подсети в IP-адресе

Как же ваше устройство определяет, какая часть IP-адреса является идентификатором сети, а какая часть – идентификатор хоста? Для этого они используют второе число, которое называется маской подсети.

В большинстве простых сетей (например, в домашних или офисных) вы увидите маску подсети в формате 255.255.255.0, где все четыре числа равны либо 255, либо 0. Позиция изменения с 255 на 0 указывает на разделение между сетью и идентификатором хоста.

Основные маски подсети, которые мы описываем здесь, известны как маски подсети по умолчанию. В более крупных сетях ситуация становится более сложной. Люди часто используют пользовательские маски подсети (где позиция разрыва между нулями и единицами сдвигается в октете) для создания нескольких подсетей в одной сети.

Адрес шлюза по умолчанию

В дополнение к самому IP-адресу и маске подсети, вы также увидите адрес шлюза по умолчанию, указанный вместе с информацией IP-адресации. В зависимости от используемой платформы, этот адрес может называться по-другому. Его иногда называют «маршрутизатором», «адресом маршрутизатора», «маршрутом по умолчанию» или просто «шлюзом». Это всё одно и то же.

Это стандартный IP-адрес, по которому устройство отправляет сетевые данные, когда эти данные предназначены для перехода в другую сеть (с другим идентификатором сети).

Простейший пример этого можно найти в обычной домашней сети. Если у вас есть домашняя сеть с несколькими устройствами, у вас, вероятно, есть маршрутизатор, подключенный к интернету через модем. Этот маршрутизатор может быть отдельным устройством или может быть частью комбо-модуля модем/маршрутизатор, поставляемого вашим интернет-провайдером.

Маршрутизатор находится между компьютерами и устройствами в вашей сети и более ориентированными на открытый доступ устройствами в интернете, передавая (или маршрутизируя) трафик взад и вперёд.

Скажем, вы запускаете свой браузер и отправляетесь на сайт webznam.ru. Ваш компьютер отправляет запрос на IP-адрес нашего сайта. Поскольку наши серверы находятся в интернете, а не в вашей домашней сети, этот трафик отправляется с вашего ПК на ваш маршрутизатор (шлюз), а ваш маршрутизатор перенаправляет запрос на наш сервер. Сервер отправляет правильную информацию обратно вашему маршрутизатору, который затем перенаправляет информацию обратно на запрашиваемое устройство, и вы видите как наш сайт отображается в нашем браузере.

Как правило, маршрутизаторы настроены по умолчанию, чтобы их частный IP-адрес (их адрес в локальной сети) был первым идентификатором хоста. Так, например, в домашней сети, использующей 192.168.1.0 для сетевого ID, маршрутизатор обычно будет на хосте 192.168.1.1.

Серверы DNS

Существует одна заключительная часть информации, которую вы увидите вместе с IP-адресом устройства, маской подсети и адресом шлюза по умолчанию: адреса одного или двух серверов DNS по умолчанию. Мы – люди – намного лучше работаем с символическими названиями, чем с числовыми адресами. Ввести webznam.ru в адресную строку вашего браузера намного проще, чем запоминать и вводить IP-адреса нашего сайта.

DNS работает как телефонная книга, храня удобные для человека имена веб-сайтов (домены), и преобразуя их в IP-адреса. DNS делает это, сохраняя всю эту информацию в системе связанных DNS-серверов через интернет. Вашим устройствам необходимо знать адреса DNS-серверов, на которые нужно отправлять свои запросы.

В типичной малой или домашней сети IP-адреса DNS-сервера часто совпадают с адресами шлюза по умолчанию. Устройства отправляют свои DNS-запросы на ваш маршрутизатор, а затем перенаправляют запросы на любые DNS-серверы, которые укажет маршрутизатор. По умолчанию, это обычно любые DNS-серверы, предоставляемые вашим провайдером, но вы можете изменить их для использования разных DNS-серверов, если хотите.

В чем разница между IPv4 и IPv6

Возможно, вы также заметили при просмотре настроек другой тип IP-адреса, называемый адресом IPv6. Типы IP-адресов, о которых мы говорили до сих пор, – это адреса, используемые протоколом IP версии 4 (IPv4), разработанным в конце 70-х годов. Они используют 32 бинарных бита, о которых мы говорили (в четырех октетах), чтобы обеспечить в общей сложности 4,29 миллиарда возможных уникальных адреса. Хотя это много, все общедоступные адреса давно были «потреблены» предприятиям. Многие из них сейчас не используются, но они назначены и недоступны для общего использования.

В середине 90-х годов, обеспокоенная потенциальной нехваткой IP-адресов, специальная рабочая группа Internet Engineering Task Force (IETF) разработала IPv6. IPv6 использует 128-битный адрес вместо 32-разрядного адреса IPv4, поэтому общее количество уникальных адресов многократно выросло и стало достаточно большим (вряд ли когда-либо закончится).

В отличие от точечной десятичной нотации, используемой в IPv4, адреса IPv6 выражаются в виде восьми групп номеров, разделенных двоеточиями. Каждая группа имеет четыре шестнадцатеричных цифры, которые представляют 16 двоичных цифр (это называется хекстетом). Типичный IPv6-адрес может выглядеть примерно так:

Дело в том, что нехватка адресов IPv4, вызвавшая беспокойство, в значительной степени смягчалась увеличением использования частных IP-адресов через маршрутизаторы. Всё больше и больше людей создавали свои собственные частные сети, используя частные IP-адреса.

Как устройство получает IP-адрес

Теперь, когда вы знаете основы работы IP-адресов, давайте поговорим о том, как устройства получают свои IP-адреса. Существует два типа IP-назначений: динамический и статический.

Динамический IP-адрес назначается автоматически, когда устройство подключается к сети. Подавляющее большинство сетей сегодня (включая вашу домашнюю сеть) используют Dynamic Host Configuration Protocol (DHCP). Когда устройство подключается к сети, оно отправляет широковещательное сообщение с запросом IP-адреса. DHCP перехватывает это сообщение, а затем назначает IP-адрес этому устройству из пула доступных IP-адресов.

Особенность динамических адресов заключается в том, что они могут иногда меняться. DHCP-серверы арендуют IP-адреса устройствам, и когда этот «срок аренды» заканчиваются, устройства должны получить другой IP-адрес из пула адресов, которые может назначить сервер.

В большинстве случаев это не имеет большого значения, и всё будет как и работало. Однако, вы можете указать устройству IP-адрес, который должен сохраняться. Например, у вас устройство, к которому нужно получать доступ вручную, и вам легче запомнить IP-адрес, чем имя. Или, у вас есть определенные приложения, которые могут подключаться только к сетевым устройствам, используя свой IP-адрес.

В этих случаях вы можете назначить статический IP-адрес для этих устройств. Есть несколько способов сделать это. Вы можете вручную настроить устройство со статическим IP-адресом, хотя иногда это может быть утомительным. Другим, более элегантным решением является настройка маршрутизатора для назначения статических IP-адресов определенным устройствам во время динамического назначения сервером DHCP. Таким образом, IP-адрес никогда не меняется, но вы не прерываете процесс DHCP, который обеспечивает бесперебойную работу.

Порядок назначения ip адресов

Лабораторная работа 1

ПРИНЦИПЫ АДРЕСАЦИИ КОМПЬЮТЕРОВ В СЕТИ TCP/IP

Изучение принципов адресации сетевых интерфейсов компьютеров глобальной сети Интернет. Приобретение навыков адресации сетевых интерфейсов компьютера по протоколам канального и сетевого уровней;

IP адрес состоит из двух логических частей — номера сети и номера узла в сети.

Для того чтобы более рационально определиться с величиной сети, и при том разграничить, какая часть IP-адреса относится к номеру сети, а какая — к номеру узла условились использовать систему классов. Система классов использует значения первых бит адреса. Таким образом, достаточно легко выяснить к какому классу относится IP-адрес.

— Если адрес начинается с 0, то сеть относят к классу А.

Номер сети класса А занимает один байт, остальные 3 байта отводятся для номеров узла в этой сети.

Таким образом, сети класса А имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей, о чем будет сказано ниже.)

Поэтому самих сетей класса А может быть немного, но зато количество узлов в них может достигать 224, то есть — 16 777 216 узлов. Например, IP-адрес 102.56.187.5 обозначает сеть с номером 102 и хост с номером 56.187.5.

— Если первые два бита адреса равны 10, то сеть относится к классу В (то есть, если первый октет IP-адреса находится в диапазоне от 128 до 191).

В сетях класса В и под номер сети и под номер узла одинаково отводится по 16 бит, то есть по 2 байта. Например, IP-адрес 154.2.91.240 обозначает сеть с номером 154.2 и хост с номером 91.240.

Таким образом, сеть класса В является сетью средних размеров с максимальным числом узлов 216, что составляет 65 536 узлов.

— Если адрес начинается с последовательности 110, то это сеть класса С (то есть, если значение первого октета в IP-адресе находится в диапазоне от 192 до 223).

В этом случае под номер сети отводится 24 бита, а под номер узла — 8 бит.

Сети класса С имеют небольшое узлов 28, то есть 256.

Надо отметить, что именно сети класса С являются наиболее распространенными.

— Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый, групповой адрес — multicast.

Если в пакете в качестве адреса назначения указан адрес класса D, то такой пакет должны получить все узлы, которым присвоен данный адрес. Но об этом мы еще поговорим ниже.

— Если адрес начинается с последовательности 11110, то это значит, что данный адрес относится к классу Е.

Адреса этого класса зарезервированы для будущих применений.

Итак, давайте в отдельной таблице приведем диапазоны номеров сетей и максимальное число узлов, соответствующих каждому классу сетей.

Таким образом, можно однозначно определить, что

Большие сети получают адреса класса А, средние — класса В, а маленькие — класса С. В зависимости от того к какому классу (А В С) принадлежит адрес, номер сети может быть представлен первыми 8, 16 или 24 разрядами, а номер хоста — последними 24, 16 или 8 разрядами.

Сетевой класс Диапазон значений первого байта (десятичный) A 1 to 126 B 128 to 191 C 192 to 223

Как мы отмечали, существуют некоторые значения IP-адресов, которые зарезервированы заранее, то есть существуют IP-адреса, которые предназначены для особых целей:

1) Если весь IP-адрес состоит только из двоичных нулей, то он обозначает адрес того узла, который сгенерировал этот пакет;

этот режим используется только в некоторых сообщениях протокола межсетевых управляющих сообщений ICMP.

2) Если в поле номера сети стоят только нули, то по умолчанию считается, что узел назначения принадлежит той же самой сети, что и узел, который отправил пакет.

IP-адрес с нулевым номером хоста используется для адресации ко всей сети. Например, в сети класса С с номером 199.60.32 IP-адрес 199.60.32.0 обозначает сеть в целом.

3) Если все двоичные разряды IP-адреса равны 1, то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета.

Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast) .

4) Если в поле номера узла назначения стоят только единицы, то пакет, имеющий такой адрес, рассылается всем узлам сети с заданным номером сети. Например, пакет с адресом 192.190.21.255 доставляется всем узлам сети 192.190.21.0.

Читать еще:  Как быстро сменить ip адрес

Такая рассылка называется широковещательным сообщением (broadcast).

При адресации хостов интерсети администратор должен обязательно учитывать все ограничения, которые вносятся особым назначением некоторых IP-адресов.

Таким образом, каждый администратор должен знать, что

ни номер сети, ни номер узла не может состоять только из одних двоичных единиц или только из одних двоичных нулей.

Отсюда следует, что максимальное количество узлов, приведенное в таблице для сетей каждого класса, на практике должно быть уменьшено на 2.

Например, в сетях класса С под номер узла отводится 8 бит, которые позволяют задавать 256 номеров: от 0 до 255. Однако на практике максимальное число узлов в сети класса С не может превышать 254, так как адреса 0 и 255 имеют специальное назначение.

Особый смысл имеет IP-адрес, первый октет которого равен 127.

Этот адрес зарезервирован для тестирования программ и взаимодействия процессов в пределах одной машины. Когда программа посылает данные по IP-адресу 127.0.0.1, то образуется как бы петля. Данные не передаются по сети, а возвращаются модулям верхнего уровня, как только что принятые.

Поэтому в IP-сети запрещается присваивать машинам IP-адреса, начинающиеся со 127!

Этот адрес имеет название loopback.

Подытожим и уточним

Для сети класса A …(один байт под адрес сети, три байта под номер хоста) 10.0.0.0 сеть класса А, потому что все хостовые биты равны 0. 10.0.1.0 адрес хоста в этой сети 10.255.255.255 широковещательный адрес этой сети, поскольку все сетевые биты установлены в 1Для сети класса B…(два байта под адрес сети, два байта под номер хоста) 172.17.0.0 сеть класса B 172.17.0.1 адрес хоста в этой сети 172.17.255.255 сетевой широковещательный адресДля сети класса C…(три байта под адрес сети, один байт под номер хоста) 192.168.3.0 адрес сети класса C 192.168.3.42 хостовый адрес в этой сети 192.168.3.255 сетевой широковещательный адрес

Едва ли не все доступные сетевые IP адреса принадлежат классу C.

Маски в IP адресации

Очевидно, что определение номеров сети по первым байтам адреса также не вполне гибкий механизм для адресации. А что если использовать какой-либо другой признак, с помощью которого можно было бы более гибко устанавливать границу между номером сети и номером узла?

В качестве такого признака сейчас получили широкое распространение маски. Итак, давайте подробнее познакомимся, что такое маска и как она работает.

Маска — это тоже 32-разрядное число, она имеет такой же вид, как и IP-адрес. Маска используется в паре с IP-адресом, но не совпадает с ним.

Принцип отделения номера сети и номера узла сети с использованием маски состоит в следующем:

Двоичная запись маски содержит единицы в тех разрядах, которые в IP-адресе должны представляться как номер сети и нули в тех разрядах, которые представляются как номер хоста.

Каждый класс IP-адресов (А, В и С) имеет свою маску, используемую по умолчанию. В маске по умолчанию:

— разряды во всех позициях, которые используются в IP-адресе для задания номера сети, заполняются единицами,

— а разряды во всех позициях, которые используются для задания номера хоста, заполняются нулями.

Таким образом, для стандартных классов сетей маски имеют следующие значения:

 класс А — 11111111. 00000000. 00000000. 00000000 (255.0.0.0) ;

 класс В — 11111111. 11111111. 00000000. 00000000 (255.255.0.0) ;

 класс С — 11111111.11111111.11111111.00000000 (255.255.255.0) .

Таким образом, очень легко, снабжая каждый IP-адрес маской, отказаться от понятий классов адресов и тем самым сделать более гибкой систему IP адресации.

Если адресу 185.23.44.206 назначить маску 255.255.255.0, то смотрим, что единицы в маске заданы в трех байтах — значит номер сети будет 185.23.44.0, а не 185.23.0.0, как это определено правилами системы классов.

Очень важное замечание!:

В масках можно указывать количество единиц в последовательности, которая определяет границу номера сети, не обязательно кратное 8, чтобы повторять деление адреса на байты.

Опять рассмотрим это на примере: для IP-адреса 129.64.134.5 назначим маску 255.255.128.0 то есть в двоичном виде:

IP-адрес 129.64.134.5 — 10000001. 01000000.10000110. 00000101

Маска 255.255.128.0 — 11111111.11111111.10000000. 00000000

Если определять номер сети в этом IP адресе по-старому, то есть игнорируя маску, в соответствии с системой классов определить, что адрес 129.64.134.5 относится к классу В, а значит, номером сети являются первые 2 байта — 129.64.0.0, а номером узла — 0.0.134.5.

Если же использовать для определения границы номера сети маску, то 17 последовательных единиц в маске, наложенные на IP-адрес, определяют номер сети в двоичном выражении число:

10000001. 01000000. 10000000. 00000000 или в десятичной форме записи

— номер сети 129.64.128.0, а номер узла 0.0.6.5.

Механизм масок очень широко распространен в IP-маршрутизации, причем маски могут использоваться для самых разных целей.

С их помощью администратор может структурировать свою сеть, не требуя от поставщика услуг дополнительных номеров сетей!

Порядок назначения IP адресов

Номера сетей могут назначаться либо централизованно, если сеть является частью Internet, либо произвольно, если сеть работает автономно.

Номера узлов и в том и в другом случае администратор назначает самостоятельно по своему усмотрению, не выходя, разумеется, из разрешенного для этого класса сети диапазона.

Главную роль в централизованном распределении IP-адресов до некоторого времени играла организация InterNIC (Network Information Center), однако с ростом сети задача распределения адресов стала слишком сложной. InterNIC делегировала часть своих функций другим организациям и крупным поставщикам услуг Internet — провайдерам. В частности распределением IP-адресов для подключения к сети Internet теперь занимаются провайдеры.

Давайте рассмотрим такую ситуацию:

Какие IP-адреса может использовать администратор, если провайдер услуг Internet не назначил ему никакого адреса?

Если, к примеру, мы точно знаем, что сеть, которую мы администрируем никогда в будущем не будет подключаться к Internet (работает в автономном режиме), тогда мы можем использовать любые IP-адреса, соблюдая правила их назначения, о которых шла речь выше. Для простоты можно использовать адреса класса С: в этом случае не придется вычислять значение маски подсети и вычислять адрес для каждого хоста. В этом случае мы должны будем просто назначить каждому сегменту нашей локальной сети его собственный сетевой номер класса С.

Однако если у нас есть хотя бы небольшая вероятность того, что когда-либо в будущем наша сеть может быть подключена к Internet, не следует использовать такие IP-адреса! Они могут привести к конфликту с другими адресами в Internet. Чтобы избежать таких конфликтов, нужно использовать IP-адреса, зарезервированные для частных сетей. Для этой цели зарезервированы специально несколько блоков IP-адресов, которые называются автономными.

Автономные IP адреса

Автономные адреса зарезервированы для использования частными сетями. Они обычно используются организациями, которые имеют свою частную большую сеть — intranet (локальные сети с архитектурой и логикой Internet), но и маленькие сети часто находят их полезными.

Эти адреса не обрабатываются маршрутизаторами Internet ни при каких условиях!

Эти адреса выбраны из разных классов. Таким образом, можно выбрать автономный адрес класса А, В или С, причем в последнем случае количество возможных адресов сетей составляет 256.

Таблица и правила IP адресации в сетях

Адресация в IP

IP-адрес любого узла сети записан 32-разрядным двоичным числом, в отличии от физических (МАС) адресов, которые зависят от конкретной сетевой технологии. Определения IP-адреса узла его физическому адресу внутри сети определяется с помощью широковещательных запросов ARP-протокола. IP-адрес имеет четыре числа в диапазоне 0-255, представлены в (двоичной, восьмеричной, десятичной или шестнадцатеричной) системе счисления и разделены точками.

Адреса основан на двух частях, префикс (n) — сетевая часть, которая общая для всех узлов данной сети, и хост-части (h) — уникальная для каждого узла. Соотношение размеров частей адреса зависит от принятого метода адресации, которых уже сменилось 3 раза.

Сначала (1980 г) было разделение на основе класса и разрешалось три фиксированных размера префикса — 1,2 или 3 байта. Они описывали класс сети. В таблице 1 наведена структура адресов пяти классов сетей. Класс D создан для группового вещания, тут хост-часть адреса отсутствует, а n…n являет идентификатор группы. Класс Е описан как резерв для будущих применений.

В 1985 году было введено деление на подсети, относительно разных размеров. Адрес подсети (s) реализует несколько старших бит, которые отводятся при стандартной классовом делении под хост-часть адреса. К примеру: структура адреса класса С имеет вид: 110nnnnn.nnnnnnnn.nnnnnnnn.sssshhhh — подсеть с 4-битной хост-частью адреса, которая может мметь 14 узлов. Подсети могут делиться на еще более меньшие подсети. Деление на подсети не допускает пересечение границы адресов класса. К примеру адрес — 110nnnnn.nnnnnnnn.nnnnnnss.sshhhhhh не является возможным, так как по первым битам он принадлежит к классу С (а для класса В такая длина префикса допустимая).

Такие результаты были не годными, и в 1993 году был принят внеклассовый принцип к определению длины префикса. После длина префикса разная, что разрешало гибко распределять адресное пространство. Комбинации из всех единиц или нулей в префикса и/или хост-части зарезервированы под широковещательные сообщения и служебных целей:

  • Нулевой адрес не используется
  • Нулевая хост-часть адреса в старых протоколах обмена RIP (маршрутная информация) означает, что передается адрес подсети.
  • Нулевой префикс определяет принадлежность получателя к сети отправителя
  • Единицы во всех битах адреса определяет широковещательность рассылки пакета всем узлам сети отправителя
  • Единицы во всех битах хост-части (префикс при этом не единичный и ненулевой) означают широковещательность рассылки пакета всем узлам сети, заданной префиксом.
  • Адреса 127.х.х.х зарезервированы для отладочных задач. Пакет, отправленный протоколом верхнего уровня по любому из таких адресов (обычно это 127.0.0.1) по сети не передается, а сразу поступает на вверх по протокольному стеку этого же узла (loopback).

При записи адреса можно применять форму, где последний элемент указывает длину префикса в битах. К примеру, адрес сети стандартного класса С может иметь десятичный вид — 199.123.456.0/24, а адрес 199.123.456.0/28 определяет уже подсеть с числом хостов 14.

Три варианта адресации различаются в подаче информации, которая нужна маршрутизатору. При классовой организации, кроме адреса больше ничего не нужно, поскольку положения префикса фиксировано. Протокол RIP сетевой маршрут узнавал по нулевой хост-части, где хоть один единичный бит определял маршрут узла. При определении подсети нужна дополнительная информация о длине префикса. При переходе на подсети было принято, что адресация внешних сетей реализована по классовому признаку, а локальные маршрутизаторы которые работают с подсетями, получают значение масок при ручной настройке. Появилась новый тип — подсетевой маршрут. Новые протоколы обмена маршрутным данными распознавала префиксы разного размера.

На сегодня форма префикса задается в виде маски подсети. Маска являет собою 32-битное число, которое записано по правилам IP-адреса, где старшие биты соответствовали префиксу и имели единичное значение. Маски могут иметь значение из неограниченного списка (таблица 2). Перед ненулевым байтом маски значения могут быть только 255, после байта — только нули. Создание маски наведено в таблице 3. Количество разрешимых адресов хостов в сети определяется по формуле — N = 2 (32 — P) — 2, где Р — длина префикса. Префиксы длиной 31 или 32 бит невозможны для реализации, префикса длиной 30 бит может адресовать только два узла (пример протокол РРР). Адресом сети можно считать адрес любого ее узла с обнуленными битами хост-части.

В десятичном виде диапазон адресов и маски сети классов:

  • Класс А: 1.0.0.0 — 126.0.0.0, маска 255.0.0.0
  • Класс В: 128.0.0.0 — 191.255.0.0, маска 255.255.0.0
  • Класс С: 192.0.0.0 — 223.255.255.0, маска 255.255.255.0
  • Класс D: 224.0.0.0 — 239.255.255.255, маска 255.255.255.255
  • Класс Е: 240.0.0.0 — 247.255.255.255, маска 255.255.255.255

Таблица 2 — Длина префикса, значение маски и количество узлов подсети

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×