Remkomplekty.ru

IT Новости из мира ПК
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Pentium шина адреса

Пентиум

Pentium (произносится: Пе́нтиум) — торговая марка нескольких поколений микропроцессоров семейства Intel с 22 марта 1993 года. Pentium является процессором Intel пятого поколения и пришёл на смену Intel 80486 (который часто называют просто 486).

Содержание

История

В июне 1989 года Винодом Дэмом (англ.) были сделаны первые наброски процессора под кодовым названием P5. Он и не подозревал, что именно этот продукт будет одним из главных достижений корпорации Intel. В конце 1991 года была завершена разработка макета процессора, и инженеры смогли запустить на нём программное обеспечение. Начался этап оптимизации топологии и повышения эффективности работы. В феврале 1992 года проектирование в основном было завершено, началось всеобъемлющее тестирование опытной партии процессоров. В апреле 1992 года принято решение о начале промышленного производства процессоров, в качестве основной промышленной базы была выбрана Орегонская фабрика № 5. Началось промышленное освоение производства и окончательная доводка технических характеристик. В октябре 1992 года Intel объявила, что процессоры пятого поколения, ранее носившие кодовое имя P5, будут называться Pentium, а не 586, как предполагали многие. Это вызвано тем, что многие фирмы, производящие процессоры, активно освоили производство «клонов» (и не только) процессоров 386 и 486. Intel собиралась зарегистрировать в качестве торговой марки название «586», чтобы больше никто не смог заниматься производством процессоров с таким названием, однако, оказалось, что зарегистрировать цифры в качестве торговой марки нельзя, поэтому было принято решение назвать новые процессоры «Pentium» (от «pent-» — пять), что также указывало на поколение данного процессора. 22 марта 1993 года состоялась презентация нового микропроцессора, через несколько месяцев появились и первые компьютеры на их основе.

Альтернативная история

История про Винода Дэма является официальной версией Intel, однако есть и другая версия появления этого процессора. В 1980-х годах в России над процессором «Эльбрус» трудился Владимир Мстиславович Пентковский, который работал при РАН под руководством Бабаяна. Примерно в 1989 делегация от Intel посетила лаборатории Вычислительной техники РАН, где встретилась с Пентковским. Пентковский получил приглашение приехать по обмену опытом в США в исследовательский центр Intel. Из этой поездки в Россию Пентковский не вернулся, а через несколько месяцев Intel официально заявила о разработке принципиально нового процессора под названием Pentium (назван в честь разработчика).

Основные отличия от 486-го процессора

  • Суперскалярная архитектура. Благодаря использованию суперскалярной архитектуры процессор может выполнять 2 команды за 1 такт. Такая возможность существует благодаря наличию двух конвейеров — u- и v-конвейер. u-конвейер — основной, выполняет все операции над целыми и вещественными числами; v-конвейер — вспомогательный, выполняет только простые операции над целыми и частично над вещественными. Чтобы старые программы (для 486) в полной мере использовали возможности такой архитектуры, необходимо было их перекомпилировать. Pentium является первым
  • 64-битная шина данных. Позволяет процессору Pentium обмениваться вдвое большим объёмом данных с оперативной памятью, чем 486 за один шинный цикл (при одинаковой тактовой частоте).
  • Механизм предсказания адресов ветвления. Применяется для сокращения времени простоя конвейеров, вызванного задержками выборки команд при изменении счетчика адреса во время выполнения команд ветвления. Для этого в процессоре используется буфер адреса ветвления BTB (Branch Target Buffer), использующий алгоритмы предсказания адресов ветвления.
  • Раздельное кэширование программного кода и данных. В процессорах Pentium используется кэш-память первого уровня (кэш L1) объёмом 16Кб, разделенная на 2 сегмента: 8Кб для данных и 8Кб для инструкций. Это улучшает производительность и позволяет делать двойное кэширование доступным чаще, чем это было возможно раньше. Кроме того, изменён механизм кэширования.
  • Улучшенный блок вычислений с плавающей запятой (FPU, сопроцессор).
  • Симметричная многопроцессорная работа (SMP).

Модели

Первоначально (22 марта 1993 года) было представлено только две модели, основанные на ядре P5 с частотами 60 и 66 МГц. Однако позже были выпущены и более производительные процессоры Pentium, но основанные на усовершенствованных ядрах. Кроме того, были представлены мобильные версии процессоров и процессоры Pentium OverDrive.

Процессоры Pentium первого поколения. Две (единственные) модели анонсированы 23 марта 1993 года и работали с тактовой частотой ядра 60 и 66 МГц, частота системной шины (FSB) была равна частоте ядра, то есть множитель ядра был равен «1,0». Кэш второго уровня размещался на материнской плате и мог иметь размер до 1 Мб. Процессор выпускался в 273-контактном корпусе CPGA и устанавливался в корпус Socket 4 и работал от напряжения 5 В. Все процессоры Pentium относятся к классу SL Enhanced, это значит, что в них предусмотрена система SMM, обеспечивающая снижение энергопотребления. Ранние варианты процессоров, с частотами 60—100 МГц (ядра P5 и P54C) имели ошибку в модуле FPU (математический сопроцессор), которая, в редких случаях, приводила к уменьшению точности операции деления. Этот дефект был обнаружен в Линчберге (США, штат Вирджиния) в 1994 году и стал известен как «Pentium FDIV баг». Процессоры на ядре P5 изготавливались с использованием 800 нанометрового техпроцесса, по биполярной F0 0f c7 c8) процессоров Pentium первого поколения, не советовали покупать данные модели. Производство на время пришлось остановить. Однако вскоре началось производство усовершенствованных процессоров, основанных на ядре P54C.

7 марта 1994 года были выпущены процессоры Pentium второго поколения. Изначально были выпущены модели с тактовыми частотами 90 и 100 МГц, однако потом была выпущена модель с частотой 75МГц. Процессоры производились по 600 нанометровой биполярной BiCMOS-технологии, что позволило уменьшить размер кристалла до 148 мм² (ядро содержало 3,2 млн транзисторов) и снизить потребляемую мощность до 10,1 Вт (для Pentium 100). Напряжение питания также было уменьшено до 3,3 В, ток, потребляемый процессором, составляет 3,25 А. Процессор выпускался в 296-контактном корпусе CPGA и устанавливался в Socket 5 или Socket 7 и был не совместим с Socket 4. В этих процессорах улучшена система SMM, добавлен усовершенствованный программируемый контроллер прерываний

P54CS

Первые процессоры, основанные на данном ядре, были выпущены 27 марта 1995 года. По большому счету, это ядро представляет собой ядро P54C изготовленной с использованием 350 нанометровой биполярной BiCMOS-технологии, что позволило ещё уменьшить размер кристалла ядра до 91 мм² (процессоры Pentium 120 и 133), однако вскоре в результате оптимизации ядра его размер удалось уменьшить до 83 мм² при том же количестве транзисторов. При этом Pentium 200 потреблял ток в 4,6 А, а его максимальная рассеиваемая энергия (тепловыделение) составляло 15,5 Вт.

8 января 1997 года были выпущены процессоры Pentium, основанные на ядре P5 третьего поколения(P55C). Центром Разработок и Исследований Intel в Хайфе (Израиль) в ядро P55C был добавлен новый набор инструкций, названный Pentium MMX). Новый процессор включает в себя устройство MMX с конвейерной обработкой команд, кэш L1 увеличен до 32 Кб (16 Кб для данных и 16 Кб для инструкций). Состоит новый процессор из 4,5 млн транзисторов и производится по усовершенствованной 350-нанометровой CMOS-технологии с использованием кремниевых полупроводников, работает на напряжении 2,8 В. Максимальный потребляемый ток равен 6,5 А, а тепловыделение равно 17 Вт (для Pentium 233 MMX). Площадь кристалла у процессоров Pentium MMX равна 141 мм². Процессоры выпускались в 296-контактном корпусе типа CPGA или PPGA для Socket 7.

Pentium OverDrive

Было выпущено несколько поколений Pentium OverDrive.

  • В 1995 году вышел первый Pentium OverDrive (использует ядро P24T). Он был предназначен для установки в гнезда типа Socket 2 или Socket 3 и работал с напряжением питания 5 В, то есть служил для модернизации систем использующих процессор 486 без замены материнской платы. При этом данный процессор обладал всеми функциями процессора Pentium первого поколения (на ядре P5). Было выпущено две модели, работающие на частотах 63МГц и 83МГц, старшая потребляла ток в 2,8 А и обладала рассеиваемой мощностью 14 Вт. Из-за высокой стоимости данный процессор ушёл, не успев появиться. И хотя через некоторое время (4 марта 1996) на смену этим процессорам пришли Pentium ODP5V с частотами 120 и 133МГц, основанные на ядре P5T (по сути, представляет собой ядро P54CS) они также не стали популярны.
  • 4 марта 1996 выходит следующая версия Pentium OverDrive (Pentium ODP3V) на ядре P54CT. Данное ядро построено на основе ядра P54CS. Процессор выпускался в 320-контактном корпусе CPGA для Socket 5 или Socket 7.
  • 3 марта1997 года выходят две модели Pentium ODPMT (с частотами 150 и 166 МГц), построенные на ядре P54CTB (аналог P55C), позже, 4 августа 1997 года выходят ещё две модели на том же ядре (с частотами 180 и 200 МГц). Они выпускались в 320-контактных корпусах CPGA и были предназначены для Socket 5 или Socket 7 (Pentium ODPMT-200 MMX только для Socket 7).

Tillamook

Процессоры, основанные на данном ядре, предназначались для портативных компьютеров. Ядро Tillamook (названо в честь города в штате Орегон, США), представляет собой ядро P55C с пониженным напряжением питания — модель с частотой 300 МГц работала с напряжением 2,0 В, потребляя при этом ток в 4,5 А, и обладала тепловыделением в 8,4 Вт. Старшие модели (с частотой 233, 266 и 300 МГц) выпускались с использованием 250 нм техпроцесса и имели кристалл площадью 90 мм², младшие (133 и 150 МГц) с использованием 280 нм техпроцесса и имели кристалл площадью 140 мм², остальные выпускались с использованием обоих техпроцессов. В зависимости от типа корпуса (TCP или CBGA) процессор соответственно либо припаивался к материнской плате, либо устанавливался в специальный модуль MMC1. Первые модели были выпущены в январе 1997 года.

Другие процессоры, использующие марку Pentium

Процессоры Intel Pentium пользовались огромной популярностью, и Intel решила не отказываться от марки Pentium, называя так и последующие процессоры, хотя они сильно отличались от первых Pentium’ов и не относились к пятому поколению. Таковыми являются:

Pentium шина адреса

486: FPU и множители

Читать еще:  Клонировать mac адрес

Процессор 486 для многих стал знаковым, поскольку с него началось знакомство с компьютером целого поколения. На самом деле, знаменитый 486 DX2/66 долгое время считался минимальной конфигурацией для геймеров. Этот процессор, выпущенный в 1989 году, обладал рядом новых интересных функций, подобно встроенному на кристалл сопроцессору FPU, кэшу данных и впервые представил множитель. Сопроцессор x87 был встроен в линейку 486 DX (не SX). В процессор был интегрирован кэш первого уровня объёмом 8 кбайт (сначала со сквозной записью/write-through, затем с обратной записью/write-back с чуть более высокой производительностью). Существовала возможность добавления кэша L2 на материнскую плату (работал на частоте шины).

Второе поколение 486 процессоров обзавелось множителем CPU, поскольку процессор работал быстрее, чем FSB, появились версии DX2 (множитель 2x) и DX4 (множитель 3x). Ещё один анекдот: «487SX», продаваемый как FPU для 486SX, представлял собой, по сути, полноценный процессор 486DX, который отключал и заменял оригинальный CPU.

У DX4 было 16 кбайт кэша и больше транзисторов — 1,6 млн. Этот процессор, изготавливаемый по 600-нм техпроцессу с площадью кристалла 76 мм², потреблял меньше энергии, чем оригинальный 486 (при напряжении 3,3 В).

Intel Pentium: досадная ошибка

Pentium, представленный в 1993 году, был интересен по многим причинам. Он стал первым процессором x86, с которым было решено отказаться от традиционных модельных номеров в пользу звучного названия, поскольку Intel не могла создать торговую марку только на одних числах. Кроме того, процессор прославился своей ошибкой. На Pentium первого поколения некоторые операции деления приводили к выдаче неверного результата. Intel заменила процессор, но ущерб компании был нанесён немалый. Ошибка, которая проявляла себя очень редко, вызвала настоящую шумиху в ИТ-прессе.

Pentium продавался в трёх разных линейках, первая была без множителя CPU, вторая — с множителем (включая знаменитый Pentium 166), а последняя обзавелась набором инструкций SIMD для x86 под названием MMX. У Pentium MMX был увеличен размер кэша L1, а также сделаны другие мелкие улучшения. Процессор Pentium стал первым x86 от Intel, способным выполнять две инструкции параллельно. У этих процессоров кэш L2 располагался на материнской плате (он работал на частоте FSB).

Позвольте дать небольшое пояснение по поводу ошибки Pentium: некоторые вычисления на FPU приводили к ошибочному результату. Ошибка появлялась редко — хотя разные источники дают разные оценки по поводу того, насколько редко — и Intel заменила дефектные процессоры бесплатно. Ниже приведён пример ошибки Pentium.

4195835,0/3145727,0 = 1,333 820 449 136 241 002 (правильный результат)

4195835,0/3145727,0 = 1,333 739 068 902 037 589 (неправильный результат на дефектном Pentium)

Pentium Pro: первый, способный работать с памятью объёмом больше 4 Гбайт

Pentium Pro, выпущенный в 1995 году, стал первым процессором x86, способным работать с объёмом памяти более 4 Гбайт благодаря расширению Physical Address Extension (PAE), то есть переходу на 36-битное адресное пространство, позволявшее адресовать 64 Гбайт ОЗУ. Что интересно, этот процессор оказался первым с архитектурой P6 (в принципе, в какой-то мере архитектура Core 2 наследована от неё) и также стал первым CPU x86, который содержал кэш L2 на процессоре, а не на материнской плате. По сути, кэш-память от 256 кбайт до 1 Мбайт располагалась рядом с CPU, в той же упаковке, но не на одном кристалле, и работала на той же частоте, что и CPU.

У процессора были некоторые проблемы с производительностью. Он прекрасно работал с 32-битными приложениями, но оказался намного медленнее с программным обеспечением, которое было написано в 16-битном коде (как некоторые части Windows 95). Причина была простая: доступ к 16-битным регистрам вызывал проблемы с управлением 32-битными регистрами, что отменяло преимущества внеочередной архитектуры Pentium Pro

Компьютерная Энциклопедия

Архитектура ЭВМ

Компоненты ПК

Интерфейсы

Мини блог

Самое читаемое

Системные платы

Шина процессора


Общие сведения о шине процессора

Шина процессора — соединяет процессор с северным мостом или контроллером памяти MCH. Она работает на частотах 66–200 МГц и используется для передачи данных между процессором и основной системной шиной или между процессором и внешней кэш-памятью в системах на базе процессоров пятого поколения. Схема взаимодействия шин в типичном компьютере на базе процессора Pentium (Socket 7) показано на рисунке.

На этом рисунке четко видна трехуровневая архитектура, в которой на самом верхнем уровне иерархии находится шина процессора, далее следует шина PCI и за ней шина ISA. Большинство компонентов системы подключается к одной из этих трех шин.

В системах, созданных на основе процессоров Socket 7, внешняя кэш-память второго уровня установлена на системной плате и соединена с шиной процессора, которая работает на частоте системной платы (обычно от 66 до 100 МГц). Таким образом, при появлении процессоров Socket 7 с более высокой тактовой частотой рабочая частота кэш-памяти осталась равной сравнительно низкой частоте системной платы. Например, в наиболее быстродействующих системах Intel Socket 7 частота процессора равна 233 МГц, а частота шины процессора при множителе 3,5х достигает только 66 МГц. Следовательно, кэш-память второго уровня также работает на частоте 66 МГц. Возьмем, например, систему Socket 7, использующую процессоры AMD K6-2 550, работающие на частоте 550 МГц: при множителе 5,5х ч астота шины процессора равна 100 МГц. Следовательно, в этих системах частота кэш-памяти второго уровня достигает только 100 МГц.

Проблема медленной кэш-памяти второго уровня была решена в процессорах класса P6, таких как Pentium Pro, Pentium II, Celeron, Pentium III, а также AMD Athlon и Duron. В этих процессорах использовались разъемы Socket 8, Slot 1, Slot 2, Slot A, Socket A или Socket 370. Кроме того, кэш-память второго уровня была перенесена с системной платы непосредственно в процессор и соединена с ним с помощью встроенной шины. Теперь эта шина стала называться шиной переднего плана (Front-Side Bus — FSB), однако я, согласно устоявшейся традиции, продолжаю называть ее шиной процессора.

Включение кэш-памяти второго уровня в процессор позволило значительно повысить ее скорость. В современных процессорах кэш-память расположена непосредственно в кристалле процессора, т.е. работает с частотой процессора. В более ранних версиях кэш-память второгоуровня находилась в отдельной микросхеме, интегрированной в корпус процессора, и работала с частотой, равной 1/2, 2/5 или 1/3 частоты процессора. Однако даже в этом случае скорость интегрированной кэш-памяти была значительно выше, чем скорость внешнего кэша, ограниченного частотой системной платы Socket 7.

В системах Slot 1 кэш-память второго уровня была встроена в процессор, но работала только на его половинной частоте. Повышение частоты шины процессора с 66 до 100 МГц привело к увеличению пропускной способности до 800 Мбайт/с. Следует отметить, что в большинство систем была включена поддержка AGP. Частота стандартного интерфейса AGP равна 66 МГц (т.е. вдвое больше скорости PCI), но большинство систем поддерживают порт AGP 2x, быстродействие которого вдвое выше стандартного AGP, что приводит к увеличению пропускной способности до 533 Мбайт/с. Кроме того, в этих системах обычно использовались модули памяти PC100 SDRAM DIMM, скорость передачи данных которых равна 800 Мбайт/с.

В системах Pentium III и Celeron разъем Slot 1 уступил место гнезду Socket 370. Это было связано главным образом с тем, что более современные процессоры включают в себя встроенную кэш-память второго уровня (работающую на полной частоте ядра), а значит, исчезла потребность в дорогом корпусе, содержащем несколько микросхем. Скорость шины процессора увеличилась до 133 МГц, что повлекло за собой повышение пропускной способности до 1066 Мбайт/с. В современных системах используется уже AGP 4x со скоростью передачи данных 1066 Мбайт/с.

Шина процессора на основе hub-архитектуры

Обратите внимание на hub-архитектуру Intel, используемую вместо традиционной архитектуры “северный/южный мост”. В этой конструкции основное соединение между компонентами набора микросхем перенесено в выделенный hub-интерфейс со скоростью передачи данных 266 Мбайт/с (вдвое больше, чем у шины PCI), что позволило устройствам PCI использовать полную, без учета южного моста, пропускную способность шины PCI. Кроме того, микросхема Flash ROM BIOS, называемая теперь Firmware Hub, соединяется с системой через шину LPC. Как уже отмечалось, в архитектуре “северный/южный мост” для этого использовалась микросхема Super I/O. В большинстве систем для соединения микросхемы Super I/O вместо шины ISA теперь используется шина LPC. При этом hub-архитектура позволяет отказаться от использования Super I/O. Порты, поддерживаемые микросхемой Super I/O, называются традиционными (legacy), поэтому конструкция без Super I/O получила название нетрадиционной (legacy-free) системы. В такой системе устройства, использующие стандартные порты, должны быть подсоединены к компьютеру с помощью шины USB. В этих системах обычно используются два контроллера и до четырех общих портов (дополнительные порты могут быть подключены к узлам USB).

В системах, созданных на базе процессоров AMD, применена конструкция Socket A, в которой используются более быстрые по сравнению с Socket 370 процессор и шины памяти, но все еще сохраняется конструкция “северный/южный мост”. Обратите внимание на быстродействующую шину процессора, частота которой достигает 333 МГц (пропускная способность — 2664 Мбайт/с), а также на используемые модули памяти DDR SDRAM DIMM, которые поддерживают такую же пропускную способность (т.е. 2664 Мбайт/с). Также следует заметить, что большинство южных мостов включает в себя функции, свойственные микросхемам Super I/O. Эти микросхемы получили название Super South Bridge (суперъюжный мост).

Система Pentium 4 (Socket 423 или Socket 478), созданная на основе hub-архитектуры, показана на рисунке ниже. Особенностью этой конструкции является шина процессора с тактовой частотой 400/533/800 МГц и пропускной способностью соответственно 3200/4266/6400 Мбайт/с. Сегодня это самая быстродействующая шина. Также обратите внимание на двухканальные модули PC3200 (DDR400), пропускная способность которых (3200 Мбайт/с) соответствует пропускной способности шины процессора, что позволяет максимально повысить производительность системы. В более производительных системах, включающих в себя шину с пропускной способностью 6400 Мбайт/с, используются двухканальные модули DDR400 с тактовой частотой 400 МГц, благодаря чему общая пропускная способность шины памяти достигает 6400 Мбайт/с. Процессоры с частотой шины 533 МГц могут использовать парные модули памяти (PC2100/DDR266 или PC2700/DDR333) в двухканальном режиме для достижения пропускной способности шины памяти 4266 Мбайт/с. Соответствие пропускной способности шины памяти рабочим параметрам шины процессора является условием оптимальной работы.

Читать еще:  Как ввести емейл адрес пример

Процессор Athlon 64, независимо от типа гнезда (Socket 754, Socket 939 или Socket 940), использует высокоскоростную архитектуру HyperTransport для взаимодействия с северным мостом или микросхемой AGP Graphics Tunnel. Первые наборы микросхем для процессоров Athlon 64 использовали версию шины HyperTransport с параметрами 16 бит/800 МГц, однако последующие модели, предназначенные для поддержки процессоров Athlon 64 и Athlon 64 FX в исполнении Socket 939, используют более быструю версию шины HyperTransport с параметрами 16 бит/1 ГГц.

Наиболее заметным отличием архитектуры Athlon 64 от всех остальных архитектур ПК является размещение контроллера памяти не в микросхеме северного моста (или микросхеме MCH/GMCH), а в самом процессоре. Процессоры Athlon 64/FX/Opteron оснащены встроенным контроллером памяти. Благодаря этому исключаются многие “узкие места”, связанные с внешним контроллером памяти, что положительно сказывается на общем быстродействии системы. Главный недостаток этого подхода состоит в том, что для добавления поддержки новых технологий, например памяти DDR2, придется изменять архитектуру процессора.

Поскольку шина процессора должна обмениваться информацией с процессором с максимально возможной скоростью, в компьютере она функционирует намного быстрее любой другой шины. Сигнальные линии (линии электрической связи), представляющие шину, предназначены для передачи данных, адресов и сигналов управления между отдельными компонентами компьютера. Большинство процессоров Pentium имеют 64-разрядную шину данных, поэтому за один цикл по шине процессора передается 64 бит данных (8 байт).

Тактовая частота , используемая для передачи данных по шине процессора, соответствует его внешней частоте. Это следует учитывать, поскольку в большинстве процессоров внутренняя тактовая частота, определяющая скорость работы внутренних блоков, может превышать внешнюю. Например, процессор AMD Athlon 64 3800+ работает с внутренней тактовой частотой 2,4 ГГц, однако внешняя частота составляет всего 400 МГц, в то время как процессор Pentium 4 с внутренней частотой 3,4 ГГц имеет внешнюю частоту, равную 800 МГц. В новых системах реальная частота процессора зависит от множителя шины процессора (2x, 2,5x, 3x и выше). Шина FSB, подключенная к процессору, по каждой линии данных может передавать один бит данных в течение одного или двух периодов тактовой частоты. Таким образом, в компьютерах с современными процессорами за один такт передается 64 бит.

Пропускная способность шины процессора

Для определения скорости передачи данных по шине процессора необходимо умножить разрядность шины данных (64 бит, или 8 байт, для Celeron/Pentium III/4 или Athlon/Duron/ Athlon XP/Athlon 64) на тактовую частоту шины (она равна базовой (внешней) тактовой частоте процессора).

Например, при использовании процессора Pentium 4 с тактовой частотой 3,6 ГГц, установленного на системной плате, частота которой равна 800 МГц, максимальная мгновенная скорость передачи данных будет достигать примерно 6400 Мбайт/с. Этот результат можно получить, используя следующую формулу:
800 МГц × 8 байт (64 бит) = 6400 Мбайт/с.

Для более медленной системы Pentium 4:
533,33 МГц × 8 байт (64 бит) = 4266 Мбайт/с;
400 МГц × 8 байт (64 бит) = 3200 Мбайт/с.

Для системы Athlon XP (Socket A) получится следующее:
400 МГц × 8 байт (64 бит) = 3200 Мбайт/с;
333 МГц × 8 байт (64 бит) = 2667 Мбайт/с;
266,66 МГц × 8 байт (64 бит) = 2133 Мбайт/с.

Для системы Pentium III (Socket 370):
133,33 МГц × 8 байт (64 бит) = 1066 Мбайт/с;
100 МГц × 8 байт (64 бит) = 800 Мбайт/с.

Максимальную скорость передачи данных называют также пропускной способностью шины (bandwidth) процессора.

Анализ развития процессоров фирмы Intel: семейство Pentium

Микроархитектура NetBurst

Повышение производительности IA-32 достигалось не только путем оптимизации конвейера команд и добавления исполнительных блоков, но и, например, внедрением кэш -памяти в ядро процессора. В семействе IA-32 встроенный кэш L1 размером 8 Кбайт впервые был реализован в процессорах Intel-486. В процессорах Pentium размер кэша был удвоен. Первые представители P6 ( Pentium Pro ) содержали также кэш L2 размером 256 или 512 Кбайт. Однако такое решение в то время оказалось слишком дорогим и невыгодным, поэтому в Pentium II была представлена технология Dual Independent Bus ( DIB ) — двойная независимая шина . Процессор выполнялся в виде картриджа с печатным краевым разъемом, на который выведена системная шина . На картридже размером 14х6,2х1,6см устанавливались микросхема ядра процессора ( CPU Core ), несколько микросхем, реализующих вторичный кэш , и вспомогательные дискретные элементы (резисторы и конденсаторы). Удаление вторичного кэша из кристалла процессора позволило использовать для кэш -памяти и памяти тегов микросхемы сторонних производителей, специализирующихся на выпуске сверхбыстродействующей памяти. Объем вторичного кэша определялся емкостью и числом установленных микросхем памяти. Для доступа к кэшу и для доступа к внешней памяти использовались раздельные шины. Такое же архитектурное решение использовалось в первых моделях Pentium III. Начиная с 1999 года (Pentium III Coppermine), кэш L2 вновь был возвращен внутрь кристаллов процессоров.

Процессор Pentium 4 является 32-разрядным представителем семейства IA-32 , по микроархитектуре принадлежащим к новому, седьмому ( по классификации Intel) поколению. С программной точки зрения он представляет собой процессор IA-32 с очередным расширением системы команд — SSE2 . По набору программно-доступных регистров Pentium 4 повторяет процессор Pentium III. С внешней, аппаратной точки зрения — это процессор с системной шиной нового типа, в которой кроме повышения тактовой частоты применены ставшие уже привычными принципы двойной (2х) и четырехкратной (4х) синхронизации, а также предпринят ряд мер по обеспечению работоспособности на ранее немыслимых частотах. Микроархитектура процессора, получившая название NetBurst, разработана с учетом высоких частот как ядра (>1,4 ГГц), так и системной шины (400 МГц). Название микроархитектуры указывает на сетевую направленность процессора: его мощь необходима для ресурсоемких мультимедийных Интернет-приложений.

Процессор Pentium 4 является однокристальным. Кроме собственно вычислительного ядра, он содержит кэш — память двух уровней. Вторичный кэш , общий для инструкций и данных, имеет размер 256 Кбайт и разрядность шины 256 бита (32 байта), как и в последних процессорах Pentium III. Шина вторичного кэша работает на частоте ядра, что обеспечивает ее пропускную способность 32х1,4 = 44,8 Гбайт/с на частоте 1,4 ГГц. Вторичный кэш имеет ЕСС-контроль, позволяющий обнаруживать и исправлять ошибки. Первичный кэш данных имеет такую же высокую пропускную способность (44,8 Гбайт/с), но его объем сократился вдвое (8 Кбайт против 16 в Pentium III). Первичный кэш инструкций в привычном понимании отсутствует, его заменил кэш трассы ( trace cache ). В нем хранятся последовательности микроопераций , в которые декодированы инструкции. Здесь могут помещаться до 12К микроинструкций.

Интерфейс системной шины процессора рассчитан только на однопроцессорные конфигурации, отсутствует также возможность избыточного функционального контроля ( FRC ). Интерфейс во многом напоминает шину Р6, протокол также ориентирован на одновременное выполнение нескольких транзакций. Принят ряд мер по обеспечению высокой пропускной способности. В процессоре Pentium 4 частота шины 400 МГц с «четырехкратной накачкой» ( quad pumped) — тактовая частота системной шины составляет 100 МГц, но частота передачи адресов и данных выше. Новая информация по линиям с общей синхронизацией может передаваться на каждом такте с частотой 100 МГц. Для 2 и 4-кратной передачи используется синхронизация от источника данных. По шине адреса информация передается в режиме 2-кратной передачи, стробами являются два сигнала ADSTB0# и ADSTB1#. По спаду этих стробов передается адрес , а по фронту — информация о типе транзакции. Таким образом, в каждом такте шины (за 10 нс) передается и адрес , и тип транзакции (у Р6 на это требовалось 2 такта, что занимало 15-30 нс). По шине данных информация передается с четырехкратной частотой, для чего используются пары стробирующих сигналов DSTBp[0:3]# и DSTBn[0:3]# с периодом 5 нс (частота 200 МГц). Стробы сдвинуты относительно друг друга на 2,5 нс (половину своего маленького такта), синхронизация по их спадам и дает учетверенную частоту передачи.

Разрядность шины данных, как и в предыдущих двух поколениях процессоров, составляет 64 бита (8 байт ), что в режиме 4-кратной передачи дает максимальную пропускную способность 100х4х8=3,2 Гбайт/с . У процессоров Pentium III шина обеспечивала 133х8=1,06 Гбайт/с . Шина адреса имеет разрядность 36 бит , и это позволяет адресовать те же 64 Гбайт памяти, из которых кэшируются только первые 4 Гбайт.

Исполнительные устройства МП ( АЛУ ) работают на удвоенной частоте, что дает возможность выполнять большинство целочисленных инструкций за половину такта. По сравнению с предыдущими поколениями IA-32 , Pentium 4 содержит самый длинный конвейер команд, состоящий из 20 этапов и названный гиперконвейером . В связи с этой особенностью многие специалисты отмечают, что микроархитектура NetBurst будет иметь максимальную производительность исполнения предсказуемых (линейных и циклических) участков программы, характерных для приложений, на которые ориентирован Pentium 4. На непредсказуемо ветвящихся программах, к которым относятся, например, офисные приложения , длинный гиперконвейер оказывается менее эффективным, чем конвейер Р6, если бы тот удалось разогнать до частот 1,4 ГГц и выше. Чтобы частично компенсировать этот недостаток, были существенно оптимизированы механизмы спекулятивного исполнения и предсказания ветвлений.

Процессор

На материнской плате есть большая микросхема — центральный процессор (CPU или ЦП). Это мозг компьютера. Процессор выполняет всю обработку данных, поступающих в компьютер и хранящихся в памяти компьютера. Обработка выполняется под управлением программы, которая хранится в памяти компьютера. Персональные компьютеры оснащаются центральными процессорами разной мощности (производительности). В зависимости от решаемой вами задачи может потребоваться тот или иной процессор.

Конструктивно процессор состоит из ячеек, похожих на ячейки оперативной памяти, но в этих ячейках данные могут не только храниться, но и изменяться. Внутренние ячейки процессора называют регистрами. Среди регистров процессора есть и такие, которые в зависимости от своего содержания способны модифицировать исполнение команд. Таким образом, управляя засылкой данных в разные регистры процессора, можно управлять обработкой данных. На этом основано исполнение программ.

Читать еще:  Какой адрес ячейки

С остальными устройствами компьютера, и первую очередь с оперативной памятью процессор связан несколькими группами проводников, называемых шинами. Основных шин три: шина данных, адресная шина и командная шина.

Адресная шина. У процессоров Intel Pentium адресная шина 32- разрядная, то есть состоит из 32 параллельных линий. В зависимости от того, есть напряжение на какой – то из линий или нет, говорят, что на этой линии выставлена единица или ноль. Комбинация из 32 нулей и единиц образует 32 – разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копирования данных из ячейки в один из своих регистров.

Шина данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и обратно. В компьютерах, собранных на базе процессоров Intel Pentium, шина данных 64 – разрядная, то есть состоит из 64 линий, по которым за один раз на обработку поступают сразу 8 байтов.

Шина команд. Для того чтобы процессор мог обрабатывать данные, ему нужны команды. Он должен знать, что следует сделать с теми байтами, которые хранятся в его регистрах. Эти команды поступают в процессор тоже из оперативной памяти, но не из тех областей, где хранятся массивы данных, а оттуда, где хранятся программы. Команды тоже представлены в виде байтов. Самые простые команды укладываются в один байт, однако есть такие, для которых нужно два, три и более байтов. В современных процессорах шина команд 32 – разрядная, хотя существуют 64 – разрядные и даже 128 – разрядные.

Совокупность всех возможных команд, которые может выполнить процессор над данными, образует так называемую систему команд процессора. Процессоры, относящиеся к одному семейству, имеют одинаковые или близкие системы команд. Процессоры, относящиеся к разным семействам, различаются по системе команд и невзаимозаменяемые.

Процессоры с расширенной и сокращенной системой команд. Двумя основными архитектурами набора команд, используемыми компьютерной промышленностью на современном этапе развития вычислительной техники являются архитектуры CISC и RISC. Основоположником CISC-архитектуры можно считать компанию IBM с ее базовой архитектурой 360, ядро которой используется с1964 года и дошло до наших дней, например, в таких современных мейнфреймах как IBM ES/9000.

Система команд процессоров Intel Pentium насчитывают более тысячи различных команд. Такие процессоры называют процессорами с расширенной системой команд – CISC – процессорами (CISC – Complex Instruction Set Computing).

В противоположность CISC – процессорам в середине 80 – х годов появились процессоры архитектуры RISC с сокращенной системой команд (RISCReduced Instruction Set Computing). При такой архитектуре количество команд в системе намного меньше, и каждая из них выполняется намного быстрее. Оборотная сторона сокращенного набора команд состоит в том, что сложные операции приходится эмулировать далеко не эффективной последовательностью простейших команд сокращенного набора.

В результате конкуренции между двумя подходами к архитектуре процессоров сложилось следующее распределение их сфер применения:

Процессоры компании INTEL. Микропроцессоры 8086/8088 (1978-1979) содержит в себе 29000 транзисторов и является первым 16-разрядным микропроцессором и соответственно разрядность внешней шины данных составляла 16-бит. Микропроцессор 8086 выпускался в четырех версиях: с рабочими тактовыми частотами в 5,6,8, и 10 МГц. Этот процессор мог выполнять 0,33, 0.66 и 0,75 MIPS (т.е. миллион операций в секунду).

Шестнадцатиразрядный микропроцессор 80186 из серии х86 (1980) был оснащен внутренним тактовым генератором, системным контроллером, контроллеров прерываний, контроллером прямого доступа к памяти и программируемым драйвером. Тактовые частоты равнялись в 8, 10, 12.5 МГц.

Микропроцессор 80286 (1982) (впервые устанавливался в ПК IBM PC/AT ) содержит в себе 134000 транзисторов, имеет 24 регистра. Этот процессор мог выполнять 1.2 MIPS, 1.5 MIPS, 2.66 MIPS с тактовой частотой 8, 10 и 12.5 МГц.

Микропроцессор 80386 (1985-1990) содержит в себе 275000 транзисторов и имеет 32 регистра. Тактовые частоты этого процессора равнялись 16, 20, 25 и 33МГц и мог выполнять до 11.4 MIPS. В 1990 году данная компания выпускала микропроцессор семейства 386, который потреблял меньше энергии и содержал 885000 транзисторов.

Микропроцессор 80486 (1989-1994) содержал в себе 1.2 млн. транзисторов и имел 29 регистров. Процессор 486DX содержит 32 адресные линии для адресации до 4Гбайт физического ОЗУ и до 64 Тбайт виртуальной памяти. Имеет кэш- память объемом 8 Кбайт. Тактовая частота -33 МГц и он выполняет 26,9 миллионов операций в секунду.

Pentium (1993-1998) был представлен в 1993 году. Он содержит 3,21 млн. транзисторов. Процессор сохранил 32-разрядную адресную шину 486 семейства. В данном процессоре используются две 8-ми Кбайтные кэш – памяти – одну для команд, другую – для данных. На частоте 60 МГц процессор выполняет 100 млн. операций в секунду, а в частоте 66 МГц – 11,6 млн. операций в секунду.

Pentium Pro (1995-1999) был усовершенствованием процессора Pentium и предназначался для использования в бизнес – приложениях, таких как высокопроизводительные рабочие станции и сетевые серверы. Рабочая тактовая частота равнялась от 150 до 200МГц.

Pentium MMX (1997-1999) мультимедийные расширения показал на 10-20% большую производительность по сравнению с обычными процессорами Pentium, работающими на той же тактовой частоте, при выполнении одних и тех же программ. Тактовая частота равнялись от 133 до 233 МГц. Этот процессор обеспечивал большую глубину цветопередачи и большее разрешение при сохранении высокой скорости смены кадров при воспроизведении и создании видео.

Pentium II (1997-настоящее время). Компания Intel объединил лучшие свойства процессоров Pentium Pro, Pentium MMXи в 1997 году был выпущен процессор Pentium II . данном процессоре используется 32 Кбайта кэш- памяти. В корпусе процессора также находится 512 Кбайт кэш-памяти второго уровня, что позволяет получить максимальную производительнсть процессора, не полагаясь на кэш-памяти системной платы. Тактовая частота – от 233 до 450 МГц.

Процессор Pentium III (1999 -настоящее время) появился в 1999 году, и в нем было использовано то же само базовое ядроPentium Pro, Pentium II .

Процессор Pentium IV (2000 -настоящее время) преодолел тактовой частоты 1 ГГц. В данном процессоре была использована новая архитектура, которая имеет ряд новых функциональных возможностей, включая гиперконвейерную технологию, 400 МГц системную шину, кэш-память для хранения адресов выполненных программных переходов исполняемой программы и блок ускоренной обработки. Процессор работает тактовой частотой от 1,3 до 3,6 ГГц.

Itanium (2001- настоящее время) процессор фирмы Intel, является первым 64 — разрядным процессором. Данный процессор основан на следующим поколений технологий, таких как четкий параллелизм (Explicit Parallelist), предсказание ветвлений (Prediction) и предположительное упреждающее выполнение программы, обеспечивающих высокую эффективность обработки и увеличивающие число исполняемых команд за один цикл.

Процессоры компании AMD. Серия процессоров Am486DX (1994-1995) появились в начале 1990 года. В процессоре был встроен кэш-память с обратной записью и улучшенные функции управления питанием, включая питание от 3-х вольт, режим управления системой и управление тактовой частотой.

Am5x86 (1995-1999) процессор вывел компанию AMD на рынок центральных микропроцессоров. Данный процессор работал с тактовой частотой 133 МГц, используя частоту 33 МГц шины 486 – системной платы.

Процессор серии К6 (1997- настоящее время) значительно сократил разрыв в производительности между процессорами компаний AMD и Intel. В процессорах К6 используются процессорный разъем Socket 7 и содержит семь параллельных исполнительных блоков и в нем реализован двухуровневый алгоритм предсказания ветвлений программы. Тактовая частота – от 166 до 300 МГц.

Процессор К6 и К6-3 (1998- настоящее время) появился в 1998 году. Цифра 2 в названии означает увеличенную тактовую частоту процессора и частоту шины с ядром процессора К6. Процессор К6-3 – это процессор К6-2, в который на кристалл процессора добавили кэш-память второго уровня емкостью 256 Кбайт, работающую на полной частоте ядра процессора.

Процессор Athlon (1999 – настоящее время) работает с тактовой частотой с 500 МГц и настоящее время достиг 2,2 ГГц. По заявлению компании AMD модель Athlon является процессором седьмого поколения (7х86), в его основе лежит совершенно иная архитектура системной шины чем та, которая используется в центральном микропроцессорах семейства Pentium компании Intel. Компания AMD приобрела лицензию на технологию шины Alpha EV-6 у компании Digital Equipment Corporation. Данная шина работает на частоте 200 или 266 МГц и обладает пропускной способностью в 1,6 Гбайт в секунду. В микропроцессорной системе системная шина может передавать 3,2 Гбайт в секунду на частоте 400 МГц. Она включает такие передовые технологии как топология «точка-точка», синхронная пакетная передача данных, и низковольтовое питание.

Процессор Duron (2000 – настоящее время) был выпущен данной компанией в качестве конкурента процессору Celeron компании Intel. Процессоре реализован ядро процессора Athlon. Единственным отличием является меньший объем кэш-памяти.

Процессор компании VIA Cyrix. Компания Cyrix заявила о себе в 1992 году, выпустив процессор Cyrix 486SLC и в 1993 году выпустил процессор 486 DX4, а в 1995 году процессор Cyrix 5×86 (Mlsc). Этот процессор был единственной альтернативой процессору AMD 5×86.

Для обработки мультимедийной информации компанией был выпущен (1996-1999) MediaGX. Этот процессор 64- разрядный с ядром х86 – совместимого процессора. Тактовая частота от 120 до 300 МГц. Объем кэш-памяти первого уровня составляет 16 Кбайт.

Процессор 6х86МХ(1997-1999) . Тактовая частота от 150 МГц до 333 МГц.

Процессор VIA/CyrixIII (1999-настоящее время). Данный процессор работает тактовой частотой от 500 до 700 МГц. Процессор располагает 128 Мбайт кэш-памятью первого уровня.

Процессор VIA Samuel II(2001 – настоящее время). Данный процессор в отличие от процессора CyrixIII имеет кэш-памяти второго уровня (64 Кбайт). Тактовая частота превысил 1 ГГц. Питание 1.5 В.

Ссылка на основную публикацию
Adblock
detector